Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein

Abstract

Specific patterns of neuronal firing induce changes in synaptic strength that may contribute to learning and memory. If the postsynaptic NMDA (N-methyl-D-aspartate) receptors are blocked, long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and the learning of spatial information are prevented. The NMDA receptor can bind a protein known as postsynaptic density-95 (PSD-95), which may regulate the localization of and/or signalling by the receptor. In mutant mice lacking PSD-95, the frequency function of NMDA-dependent LTP and LTD is shifted to produce strikingly enhanced LTP at different frequencies of synaptic stimulation. In keeping with neural-network models that incorporate bidirectional learning rules, this frequency shift is accompanied by severely impaired spatial learning. Synaptic NMDA-receptor currents, subunit expression, localization and synaptic morphology are all unaffected in the mutant mice. PSD-95 thus appears to be important in coupling the NMDA receptor to pathways that control bidirectional synaptic plasticity and learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of the PSD-95 gene.
Figure 2: Anatomy and NR1 localization in hippocampus CA1 region of mice.
Figure 3: NMDA-receptor currents and synaptic physiology.
Figure 6: Model for PSD-95 function.
Figure 4: Frequency-dependent changes in synaptic strength.
Figure 5: Behavioural data.

Similar content being viewed by others

References

  1. Bear, M. F. & Malenka, R. C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389–399 (1994).

    Article  CAS  Google Scholar 

  2. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Hollman, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  Google Scholar 

  4. Nakanishi, S. & Masu, M. Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomolec. Struct. 23, 314–348 (1994).

    Article  Google Scholar 

  5. Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358–367 (1997).

    Article  CAS  Google Scholar 

  6. Kornau, H.-C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Kim, E., Cho, K.-O., Rothschild, A. & Sheng, M. Heteromultimeriozation and NMDA receptor-clustering activity of chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103–113 (1996).

    Article  CAS  Google Scholar 

  8. Müller, B. M. et al. SAP102, a novel postsynaptic protein that interacts with NMDA receptor complexes in vivo. Neuron 17, 255–265 (1996).

    Article  Google Scholar 

  9. Niethammer, M., Kim, E. & Sheng, M. Interaction between the C terminus of NMDA receptor subunits and mutliple members of the PSD-95 family of membrane-associated guanylate kinases. J. Neurosci. 16, 2157–2163 (1996).

    Article  CAS  Google Scholar 

  10. Cho, K. O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  11. Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 268, 4580–4583 (1993).

    CAS  PubMed  Google Scholar 

  12. Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD–95 and alpha1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).

    Article  CAS  Google Scholar 

  14. Hough, C. D., Woods, D. F., Park, S. & Bryant, P. J. Organizing a functional junctional complex requires specific domains of the Drosophila MAGUK discs-large. Genes Dev. 11, 3242–3252 (1997).

    Article  CAS  Google Scholar 

  15. Müller, B. M. et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci. 15, 2354–2366 (1995).

    Article  Google Scholar 

  16. Hunt, C. A., Schenker, L. J. & Kennedy, M. B. PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane in forebrain synapses. J. Neurosci. 16, 1380–1388 (1996).

    Article  CAS  Google Scholar 

  17. Wang, J. H. & Kelly, P. A. T. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms. J. Neurophysiol. 78, 2707–2716 (1997).

    Article  CAS  Google Scholar 

  18. Irie, M. et al. Binding of neuroligins to PSD-95. Science 277, 1511–1515 (1997).

    Article  CAS  Google Scholar 

  19. Tejedor, F. J. et al. Essential role for dlg in synaptic clustering of shaker K+ channels in vivo. J. Neurosci. 17, 152–159 (1997).

    Article  CAS  Google Scholar 

  20. Mayford, M., Wang, J., Kandel, E. R. & O'Dell, T. J. CaMKII regulates the frequency-response function of hipocampal synapses for the production of both LTD and LTP. Cell 81, 891–904 (1995).

    Article  CAS  Google Scholar 

  21. Dudek, S. M. & Bear, M. F. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13, 2910–2918 (1993).

    Article  CAS  Google Scholar 

  22. Morris, R. G. M., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  24. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: Differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998).

    Article  CAS  Google Scholar 

  25. Wyszynski, M. et al. Competitive binding of α-actinin and calmodulin to the NMDA receptor. Nature 385, 439–442 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Wechsler, A. & Teichberg, V. I. Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin. EMBO J. 17, 3931–3939 (1998).

    Article  CAS  Google Scholar 

  27. Bienenstock, E., Cooper, L. & Munro, P. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    Article  CAS  Google Scholar 

  28. Kim, J. H., Liao, D., Lau, L.-F. & Huganir, R. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20, 683–691 (1998).

    Article  CAS  Google Scholar 

  29. Chen, H.-J., Rojas-Soto, M., Oguni, A. & Kennedy, M. B. Asynaptic Ras GTPase-activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20, 895–904 (1998).

    Article  CAS  Google Scholar 

  30. Naisbitt, S. et al. Characterization of guanylate kinase-associated protein, a postsynaptic density protein at excitatory synapses that interacts directly with postsynaptic density-95/synapse-associated protein 90. J. Neurosci. 17, 5687–5696 (1997).

    Article  CAS  Google Scholar 

  31. Takeuchi, M. et al. SAPAPs: A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272, 11943–11951 (1997).

    Article  CAS  Google Scholar 

  32. Tsunoda, S. et al. Amultivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Sejnowski, T. J. Statistical constraints on synaptic plasticity. J. Theor. Biol. 69, 387–389 (1977).

    Article  Google Scholar 

  34. Willshaw, D. & Dayan, P. Optimal plasticity from matrix memories: what goes up must come down. Neural Comp. 2, 85–93 (1990).

    Article  Google Scholar 

  35. Hancock, P. J. B., Smith, L. S. & Phillips, W. A. Abiologically supported error-correcting learning rule. Neural Comp. 3, 201–212 (1991).

    Article  Google Scholar 

  36. Otto, T., Eichenbaum, H., Wiener, S. I. & Wible, C. G. Learning-related patterns of CA1 spike trains parallel stimulation parameters optimal for inducing hippocampal long-term potentiation. Hippocampus 1, 181–192 (1991).

    Article  CAS  Google Scholar 

  37. Morrison, B. M., Janssen, W. G. M., Gordon, J. W. & Morrison, J. H. Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. J. Comp. Neurol. 395, 523–534 (1998).

    Article  CAS  Google Scholar 

  38. Rayport, S. et al. Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology. J. Neurosci. 12, 4264–4280 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. J. H. Smith for advice and for the 129 genomic library, J. Ure for embryo injection, L. Anderson and J. Young for mouse care, W. Janssen for technical assistance, F. Johnston and G.Brown for photography, and R. Ellaway for illustrations. This work was supported by the Fyssen Foundation (M.M.) and the BBSRC (M.M., M.D. and P.C.), by grants from the NIH and the Charles A. Dana Foundation (J.H.M. and Y.H.), the Esther A. and Joseph Klingenstein Fund and the Pew Charitable Trusts (T.J.O.), a grant from the National Institute of Mental Health (T.J.O.), and the Wellcome Trust (L.C.W. and S.G.N.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth G. N. Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migaud, M., Charlesworth, P., Dempster, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998). https://doi.org/10.1038/24790

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/24790

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing