Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RNA polymerase II is an essential mRNA polyadenylation factor

Abstract

Production of messenger RNA in eukaryotic cells is a complex, multistep process. mRNA polyadenylation, or 3′ processing, requires several protein factors, including cleavage/polyadenylation-specificity factor (CPSF), cleavage-stimulation factor, two cleavage factors and poly(A) polymerase (reviewed in refs 1, 2). These proteins seem to be unnecessary for other steps in mRNA synthesis such as transcription and splicing, and factors required for these processes were not considered to be essential for polyadenylation. Nonetheless, these reactions may be linked so that they are effectively coordinated in vivo3,4,5,6,7,8,9. For example, the CTD carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAP II) is required for efficient splicing and polyadenylation in vivo8, and CPSF is brought to a promoter by the transcription factor TFIID and transferred to RNAP II at the time of transcription initiation9. These findings suggest that polyadenylation factors can be recruited to an RNA 3′-processing signal by RNAP II, where they dissociate from the polymerase and initiate polyadenylation. Here we present results that extend this model by showing that RNAP II is actually required, in the absence of transcription, for 3′ processing in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphoserine and RNA polymerase II activate pre-mRNA 3′ cleavage.
Figure 2: Both IIA and IIO isoforms of RNA polymerase II can activate 3′ cleavage.
Figure 3: The CTD is necessary and sufficient to reconstitute 3′ cleavage.
Figure 4: RNA polymerase II is required for 3′ cleavage in nuclear extract.

Similar content being viewed by others

References

  1. Wahle, E. & Keller, W. The biochemistry of polyadenylation. Trends Biochem. Sci. 21, 247–250 (1996).

    Article  CAS  Google Scholar 

  2. Colgan, D. F. & Manley, J. L. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11, 2755–2766 (1997).

    Article  CAS  Google Scholar 

  3. Niwa, M., Rose, S. D. & Berget, S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4, 1552–1559 (1990).

    Article  CAS  Google Scholar 

  4. Gunderson, S. I. et al. The human U1A snRMP protein regulates polyadenylation via direct interaction with poly(A) polymerase. Cell 76, 531–541 (1994).

    Article  CAS  Google Scholar 

  5. Lutz, C. S. et al. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage–polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10, 325–337 (1996).

    Article  CAS  Google Scholar 

  6. Yuryev, A. et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl Acad. USA 93, 6975–6980 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Mortillaro, M. J. et al. Ahyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl Acad. USA 93, 8253–8257 (1996).

    Article  ADS  CAS  Google Scholar 

  8. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Dantonel, J. C., Murthy, K. G. K., Manley, J. L. & Tora, L. CPSF links transcription and mRNA 3′ end formation. Nature 389, 399–402 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Hirose, Y. & Manley, J. L. Creatine phosphate, not ATP, is required for 3′ end cleavage of mammalian pre-mRNA in vitro. J. Biol. Chem. 272, 29636–29642 (1997).

    Article  CAS  Google Scholar 

  11. Matthews, H. R. Protein kinases and phosphatases that act on histidine, lysine, or arginine residues in eukaryotic proteins: a possible regulator of the mitogen-activated protein kinase cascade. Pharmacol. Ther. 67, 323–350 (1995).

    Article  CAS  Google Scholar 

  12. Takagaki, Y., Ryner, L. C. & Manley, J. L. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3, 1711–1724 (1989).

    Article  CAS  Google Scholar 

  13. Takagaki, Y., Ryner, L. C. & Manley, J. L. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52, 731–742 (1988).

    Article  CAS  Google Scholar 

  14. Christofori, G. & Keller, W. 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNP. Cell 54, 875–889 (1988).

    Article  CAS  Google Scholar 

  15. Colgan, D. F., Murthy, K. G. K., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Colgan, D. F., Murthy, K. G. K., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 17, 1053–1062 (1998).

    Article  CAS  Google Scholar 

  17. Manley, J. L. & Tacke, R. SR proteins and splicing control. Genes Dev. 10, 1569–1579 (1996).

    Article  CAS  Google Scholar 

  18. Lou, H., Gagel, R. F. & Berget, S. M. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10, 208–219 (1996).

    Article  CAS  Google Scholar 

  19. Dahmus, M. E. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012 (1996).

    Article  CAS  Google Scholar 

  20. Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl Acad. USA 88, 10004–10008 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Besse, S., Vigneron, M., Pichard, E. & Puvion-Dutilleul, F. Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granulates. Gene Expr. 4, 143–161 (1995).

    CAS  PubMed  Google Scholar 

  22. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  Google Scholar 

  23. Takagaki, Y., Manley, J. L., MacDonald, C. C., Wilusz, J. & Shenk, T. Amultisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4, 2112–2120 (1990).

    Article  CAS  Google Scholar 

  24. Reinberg, D. & Roeder, R. G. Factors involved in specific transcription by mammalian RNA polymerase II. J. Biol. Chem. 262, 3310–3321 (1987).

    CAS  PubMed  Google Scholar 

  25. Zahler, A. M., Lane, W. S., Stolk, J. A. & Roth, M. B. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6, 837–847 (1992).

    Article  CAS  Google Scholar 

  26. Peterson, S. R., Dvir, A., Anderson, C. W. & Dynan, W. S. DNA binding provides a signal for phosphorylation of the RNA polymerase II heptapeptide repeats. Genes Dev. 6, 426–438 (1992).

    Article  CAS  Google Scholar 

  27. Flaherty, S. M., Fortes, P., Izaurralde, E., Mattaj, I. W. & Gilmartin, G. M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl Acad. USA 94, 11893–11898 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1988)).

    Google Scholar 

Download references

Acknowledgements

We thank C. Li for the RNAP II used in Fig. 1 and for discussion; X. Sun and D.Reinberg for purified RNAP IIB; K. G. K. Murthy for recombinant PAP and antibodies; R. Tacke for purified SR proteins; W. S. Dynan for the GST–CTD plasmid; L. Tora, C. Kedinger and M. Vigneron for mAb 7G5; X. H. Shi, Y. Chen and Y. Sun for help in preparing nuclear extracts; and J. Dahlberg for suggesting that arginine phosphate might function by mimicking a phosphoarginine-containing protein. This work was supported by a grant from the NIH to J.M.; Y.H. was partly supported by the Japanese Ministry of Education, Science, and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Manley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, Y., Manley, J. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395, 93–96 (1998). https://doi.org/10.1038/25786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25786

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing