Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ

Abstract

The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-dependent transcription factor that is important in adipocyte differentiation and glucose homeostasis and which depends on interactions with co-activators, including steroid receptor co-activating factor-1 (SRC-1). Here we present the X-ray crystal structure of the human apo-PPAR-γ ligand-binding domain (LBD), at 2.2 Å resolution; this structure reveals a large binding pocket, which may explain the diversity of ligands for PPAR-γ. We also describe the ternary complex containing the PPAR-γ LBD, the antidiabetic ligand rosiglitazone (BRL49653), and 88 amino acids of human SRC-1 at 2.3 Å resolution. Glutamate and lysine residues that are highly conserved in LBDs of nuclear receptors form a ‘charge clamp’ that contacts backbone atoms of the LXXLL helices of SRC-1. These results, together with the observation that two consecutive LXXLL motifs of SRC-1 make identical contacts with both subunits of a PPAR-γ homodimer, suggest a general mechanism for the assembly of nuclear receptors with co-activators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the apo-PPAR-γ.
Figure 2: Rosiglitazone binding with the PPAR-γ LBD and SRC-1 in the ternary complex.
Figure 3: SRC-1 interactions with PPAR-γ.

Similar content being viewed by others

References

  1. Mangelsdorf, D. J.et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

    Article  CAS  Google Scholar 

  2. Kliewer, S. A.et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl Acad. Sci. USA 94, 4312–4317 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Kliewer, S. A.et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 91, 7355–7359 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Chawla, A., Schwartz, E. J., Dimaculangan, D. D. & Lazar, M. A. Peroxisome proliferator-activated receptor γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinol. 135, 798–800 (1994).

    Article  CAS  Google Scholar 

  6. Willson, T. M.et al. The structure-activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996).

    Article  CAS  Google Scholar 

  7. Wu, Z., Bucher, N. L. R. & Farmer, S. R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol. Cell. Biol. 16, 4128–4136 (1996).

    Article  CAS  Google Scholar 

  8. Tontonoz, P., Hu, E., Graves, R., Budavari, A. & Spiegelman, B. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  9. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  Google Scholar 

  10. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Tontonoz, P., Nagy, L., Alvarez, J. G. A., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).

    Article  CAS  Google Scholar 

  12. Brun, R. P.et al. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974–984 (1996).

    Article  CAS  Google Scholar 

  13. Lehmann, J. M.et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  Google Scholar 

  14. Hulin, B., McCarthy, P. A. & Gibbs, E. M. The glitazone family of antidiabetic agents. Curr. Pharm. Des. 2, 85–102 (1996).

    CAS  Google Scholar 

  15. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Wagner, R. L.et al. Astructural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Renaud, J.-P.et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Brzozowski, A. M.et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Horwitz, K. B.et al. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10, 1167–1177 (1996).

    CAS  Google Scholar 

  21. Glass, C. K., Rose, D. W. & Rosenfeld, M. G. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222–232 (1997).

    Article  CAS  Google Scholar 

  22. Barettino, D., Vivanco Ruiz, M. M. & Stunnenberg, H. G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13, 3039–3049 (1994).

    Article  CAS  Google Scholar 

  23. Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

    Article  CAS  Google Scholar 

  24. Durand, B.et al. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor; presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

    Article  CAS  Google Scholar 

  25. Tone, Y., Collingwood, T. N., Adams, M. & Chatterjee, V. K. Functional analysis of a transactivation domain in the thyroid hormone beta receptor. J. Biol. Chem. 269, 31157–31161 (1994).

    CAS  Google Scholar 

  26. Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

    Article  CAS  Google Scholar 

  27. Torchia, J.et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Zhu, Y., Qi, C., Calandra, C., Rao, M. S. & Reddy, J. K. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ. Gene Expr. 6, 185–195 (1996).

    CAS  Google Scholar 

  29. Hong, H., Kohli, K., Garabedian, M. J. & Stallcup, M. R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17, 2735–2744 (1997).

    Article  CAS  Google Scholar 

  30. Anzick, S. L.et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

    Article  CAS  Google Scholar 

  31. Chen, H.et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

    Article  CAS  Google Scholar 

  32. Kamei, Y.et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  Google Scholar 

  33. Voegel, J. J.et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

    Article  CAS  Google Scholar 

  34. Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. Asignature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

    Article  ADS  CAS  Google Scholar 

  35. Keen, H. Insulin resistance and the prevention of diabetes mellitus. New. Eng. J. Med. 331, 1226–1227 (1994).

    Article  CAS  Google Scholar 

  36. Buckle, D. R.et al. Non-thazolidinedione antihyperglycemic agents. 2: α-Carbon substituted β-phenylpropanoic acids. Bioorg. Med. Chem. Lett. 6, 2127–2130 (1996).

    Article  CAS  Google Scholar 

  37. Westin, S.et al. Interactions controlling complexes of nuclear-receptor heterodimers and co-activators. Nature 395, 199–202 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Feng, X.et al. Suprabasal expression of a dominant-negative RXR alpha mutant in transgenic mouse epidermis impairs regulation of gene transcription and basal keratinocyte proliferation by RAR-selective retinoids. Genes Dev. 11, 59–71 (1997).

    Article  CAS  Google Scholar 

  39. Durand, B.et al. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

    Article  CAS  Google Scholar 

  40. Henttu, P. M. A., Kalkhoven, E. & Parker, M. G. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17, 1832–1839 (1997).

    Article  CAS  Google Scholar 

  41. Kurokawa, R.et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371, 528–531 (1994).

    Article  ADS  CAS  Google Scholar 

  42. Forman, B. M., Umesono, K., Chen, J. & Evans, R. M. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81, 541–550 (1995).

    Article  CAS  Google Scholar 

  43. Otwinowski, Z., Isaacs, N. & Burley, S. in Proc. CCP4 Study Weekend (ed. Sawyer, L.) 56–62 (SERC Caresbury Lab., Daresbury, (1993)).

    Google Scholar 

  44. Furey, W. S. & Swaminathin, S. in Methods in Enzymology: Macromolecular Crystallography Part B Vol. 277 (eds Carter, C. & Sweet, R.) 590–620 (Academic, Orlando, (1997)).

    Book  Google Scholar 

  45. Cowtan, K. “DM”: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsletter Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  46. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Cryst. D 50, 760–776 (1994).

    Article  Google Scholar 

  47. Brunger, A. X-PLOR Version 3.0: A System for Crystallography and NMR (Yale Univ. Press, New Haven, (1992)).

    Google Scholar 

  48. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Burkhart, M. Moyer and K. Blackburn for protein sequencing and mass spectrometry; S. Blanchard, P. Charifson, T. Consler, S. Jordan, S. Kliewer, J. Lehmann, C. Mohr and E. Xu for discussions; A. Miller for artwork; and K. Milburn for computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Milburn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolte, R., Wisely, G., Westin, S. et al. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137–143 (1998). https://doi.org/10.1038/25931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25931

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing