Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene

Abstract

Brain serotonin and leptin signaling contribute substantially to the regulation of feeding and energy expenditure. Here we show that young adult mice with a targeted mutation of the serotonin 5-HT 2C receptor gene consume more food despite normal responses to exogenous leptin administration. Chronic hyperphagia leads to a 'middle-aged'-onset obesity associated with a partial leptin resistance of late onset. In addition, older mice develop insulin resistance and impaired glucose tolerance. Mutant mice also responded more to high-fat feeding, leading to hyperglycemia without hyperlipidemia. These findings demonstrate a dissociation of serotonin and leptin signaling in the regulation of feeding and indicate that a perturbation of brain serotonin systems can predispose to type 2 diabetes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Body weight gain, food intake and plasma insulin and leptin levels in chow-fed mutant mice and wild-type littermates.
Figure 2: Effect of leptin administration on food intake <(a, b ) and body weight (c, d) in mutant mice (M) and wild-type mice (WT) 11–13 weeks old.
Figure 3: Effect of leptin administration on food intake (a, b) and body weight (c, d) in mutant mice (M) and wild-type mice (WT) 38–46 weeks old.
Figure 4: a and b, Measures of glucose homeostasis in mutant mice (M) and wild-type littermates (WT).
Figure 5: Effects of diet on body weight gain, plasma glucose, insulin and leptin levels in mutant mice (M) and wild-type littermates (WT).

Similar content being viewed by others

References

  1. Blundell, J.E., Lawton, C.L. & Halford, J.C. Serotonin, eating behavior, and fat intake. Obes. Res. 3, 471S–476S (1995).

    Article  CAS  Google Scholar 

  2. Simansky, K.J. Serotonergic control of the organization of feeding and satiety. Behav. Brain Res. 73, 37–42 (1996).

    Article  CAS  Google Scholar 

  3. Curzon, G., Gibson, E.L. & Oluyomi, A.Q. Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability. Trends Pharmacol. Sci. 18, 21–25 ( 1997).

    Article  CAS  Google Scholar 

  4. Julius, D., MacDermott, A.B., Axel, R. & Jessell, T.M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241, 558– 564 (1988).

    Article  CAS  Google Scholar 

  5. Tecott, L.H. et al. Eating disorder and epilepsy in mice lacking 5HT2C serotonin receptors. Nature 374, 542– 546 (1995).

    Article  CAS  Google Scholar 

  6. Pelleymounter, M.A. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269, 540– 543 (1995).

    Article  CAS  Google Scholar 

  7. Halaas, J.L. et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269, 543– 546 (1995).

    Article  CAS  Google Scholar 

  8. Campfield, L.A., Smith, F.J., Guisez, Y., Devos, R. & Burn, P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549 (1995).

    Article  CAS  Google Scholar 

  9. Frederich, R.C. et al.Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nature Med. 1, 1311–1314 (1995).

    Article  CAS  Google Scholar 

  10. Maffei, M. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med. 1 , 1155–1161 (1995).

    Article  CAS  Google Scholar 

  11. Considine, R.V. et al.Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295 (1996).

    Article  CAS  Google Scholar 

  12. Caro, J.F., Sinha, M.K., Kolaczynski, J.W., Zhang, P.L. & Considine, R.V. Leptin: the tale of an obesity gene. Diabetes 45, 1455– 1462 (1996).

    Article  CAS  Google Scholar 

  13. Wright, D.E., Seroogy, K.B., Lundgren, K.H., Davis, B.M. & Jennes, L. Comparative localization of serotonin 1A,1C, and 2 receptor subtype mRNAs in rat brain. J. Comp. Neurol. 351, 357–373 ( 1995).

    Article  CAS  Google Scholar 

  14. Fei, H. et al.Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc. Natl. Acad. Sci. USA 94, 7001–7005 ( 1997).

    Article  CAS  Google Scholar 

  15. Elmquist, J.K., Ahima, R.S., Elias, C.F., Flier, J.S. & Saper, C.B. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc. Natl. Acad. Sci. USA 95, 741–746 ( 1998).

    Article  CAS  Google Scholar 

  16. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  Google Scholar 

  17. Hotamisligil, G.S., Arner, P., Caro, J.F., Atkinson, R.L. & Spiegelman, B.M. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415 ( 1995).

    Article  CAS  Google Scholar 

  18. Kern, P.A. et al.The expression of tumor necrosis factor in human adipose tissue. J. Clin. Invest. 95, 2111– 2119 (1995).

    Article  CAS  Google Scholar 

  19. Hotamisligil, G.S. & Spiegelman, B.M. in Diabetes Mellitus: A Fundamental and Clinical Text (eds. LeRoith, L., Taylor, S.I. & Olefsky, J.M.) 554–560 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  20. Halaas, J.L. et al.Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc. Natl. Acad. Sci. USA 94, 8878–8883 ( 1997).

    Article  CAS  Google Scholar 

  21. Bray, G.A. & York, D.A. Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol. Rev. 59, 719–809 (1979).

    Article  CAS  Google Scholar 

  22. Yen, T.T., Gill, A.M., Friger, L.G., Barsh, G.S. & Wolff, G.L. Obesity, diabetes, and neoplasia in yellow Avy/- mice: ectopic expression of the agouti gene. FASEB 8, 479–488 ( 1994).

    Article  CAS  Google Scholar 

  23. Huszar, D. et al.Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  Google Scholar 

  24. Abel, E.D., Shepherd, P.R. & Kahn, B.B. in Diabetes Mellitus: A Fundamental and Clinical Text (eds. LeRoith, L., Taylor, S.I. & Olefsky, J.M.) 530– 543 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  25. Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10 ( 1997).

    Article  CAS  Google Scholar 

  26. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389, 610– 614 (1997).

    Article  CAS  Google Scholar 

  27. Crapo, P.A. in Joslin's Diabetes Mellitus (eds. Kahn, C.R. & Weir, G.C.) 415–430 (Lea and Febiger, Philadelphia, 1994).

    Google Scholar 

  28. Milatovich, A. et al. Serotonin receptor 1c gene assigned to X chromosome in human (band q24) and mouse (bands D-FG4). Hum. Molec. Gen. 1, 681–684 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Sall for animal colony supervision and genotyping; D. Yamashiro for assistance with the generation of growth curves; S. Akana for assistance with tissue collections; M. Heiman (Eli Lilly & Co.) for recombinant mouse leptin; A. Dorison for editorial assistance; and K. Feingold, C. Grunfeld and M. German for critical reading of the manuscript. Supported by NIDA, EJLB and NARSAD (L.H.T.) and NIDDK (A.M.S., M.F.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence H. Tecott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nonogaki, K., Strack, A., Dallman, M. et al. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2C receptor gene. Nat Med 4, 1152–1156 (1998). https://doi.org/10.1038/2647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/2647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing