Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens

Abstract

SMOOTH muscle tone seems to be primarily regulated by the concentration of free calcium in cytoplasm1,2. Several agents that cause smooth muscle contraction increase the tissue content of cyclic GMP with no significant change or only small reduction of the cyclic AMP concentration3–7. It has been suggested5–7 that cyclic GMP may be casually involved in the contractile response of smooth muscle and that this nucleotide may act as a comediator with calcium to promote contraction. Several observations, however, are not consistent with this assumption. Although increases both in tissue tonus1,2 and in the cyclic GMP level8–10 induced by hormones and neurotransmitters are generally dependent on the presence of extracellular calcium and seem to be secondary to increased influx of calcium into the cytoplasm, the correlation between these two calcium-dependent events is poor in various tissues10–16. On the basis of such observations, we have suggested that cyclic GMP may act as a negative feedback inhibitor of hormonally stimulated calcium influx into cytoplasm8,10,11. We have studied the effects of various agents on cyclic nucleotide levels in the ductus deferens of the rat, and report here that many smooth muscle relaxants, including sodium nitroprusside (SNP), increase cyclic GMP levels in the ductus deferens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Somlyo, A. P. & Somlyo, A. V. Pharmacol. Rev. 22, 249–353 (1970).

    CAS  PubMed  Google Scholar 

  2. Hurwitz, L. & Suria, A. A. Rev. Pharmacol. 11, 303–326 (1971).

    Article  CAS  Google Scholar 

  3. Bär, H. P. Adv. Cycl. Nucl. Res. 4, 195–237 (1974).

    Google Scholar 

  4. Schultz, G. & Hardman, J. G. in Eukaryotic Cell Function and Growth (eds Dumont, J. E., Brown, B. L. & Marshall, N. J.) 667–683 (Plenum, New York, 1976).

    Book  Google Scholar 

  5. Lee, T.-P., Kuo, J. F. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 69, 3287–3291 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Dunham, E. W., Haddox, M. K. & Goldberg, N. D. Proc. natn. Acad. Sci. U.S.A. 71, 815–819 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Andersson, R. et al. Adv. Cycl. Nucl. Res. 5, 491–518 (1975).

    CAS  Google Scholar 

  8. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E. & Sutherland, E. W. Proc. natn. Acad. Sci. U.S.A. 70, 3889–3893 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Schultz, G. & Hardman, J. G. Adv. Cycl. Nucl. Res. 5, 339–351 (1975).

    CAS  Google Scholar 

  10. Schultz, G., Schultz, K. & Hardman, J. G. Metabolism 24, 429–437 (1975).

    Article  CAS  Google Scholar 

  11. Schultz, G. in Asthma II Physiology Immunopharmacology and Treatment (eds Austen, K. F. & Lichtenstein, L. M.) (Academic, New York, 1977).

    Google Scholar 

  12. Diamond, J. & Hartle, D. K. Canad. J. Physiol. Pharmacol. 52, 763–767 (1974).

    Article  CAS  Google Scholar 

  13. Diamond, J. & Holmes, T. G. Canad. J. Physiol. Pharmacol. 53, 1099–1107 (1975).

    Article  CAS  Google Scholar 

  14. Clyman, R. I., Sandler, J. A., Manganiello, V. & Vaughan, M. J. clin. Invest. 55, 1020–1025 (1975).

    Article  CAS  Google Scholar 

  15. Diamond, J. & Hartle, D. K. J. Cycl. Nucl. Res. 2, 179–188 (1976).

    CAS  Google Scholar 

  16. Diamond, J. & Blisard, K. S. Molec. Pharmacol. 12, 688–692 (1976).

    CAS  Google Scholar 

  17. Kreye, V. A. W., Baron, G. D., Lüth, J. B. & Schmidt-Gayk, H. Naunyn-Schmiedeberg's Arch. Pharmacol. 288, 381–402 (1975).

    Article  CAS  Google Scholar 

  18. Hurwitz, L. & Joiner, P. D. Am. J. Physiol. 218, 12–19 (1970).

    CAS  Google Scholar 

  19. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W. & Sutherland, E. W. Proc. natn. Acad. Sci. U.S.A. 70, 1721–1725 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Kimura, H., Mittal, C. K. & Murad, F. Nature 257, 700–702 (1975).

    Article  ADS  CAS  Google Scholar 

  21. Katsuki, S. & Murad, F. Pharmacologist 18, 220, (1976).

    Google Scholar 

  22. De Rubertis, F. R. & Craven, P. A. Science 193, 897–899 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Pöch, G. & Umfahrer, W. Naunyn-Schmiedeberg's Arch. Pharmacol. 293, 257–268 (1976).

    Article  Google Scholar 

  24. Fleckenstein, A., Grün, G., Tritthart, H., Byon, K. & Harding, P. Klin. Wschr. 49, 32–41 (1971).

    Article  CAS  Google Scholar 

  25. Grün, G. & Fleckenstein, A. Arzneim.-Forsch. 22, 334–344 (1972).

    Google Scholar 

  26. Godfraind, T. & Kaba, A. Arch. int. Pharmacodyn. Suppl. 196, 35–49 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHULTZ, KD., SCHULTZ, K. & SCHULTZ, G. Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens. Nature 265, 750–751 (1977). https://doi.org/10.1038/265750a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265750a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing