Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interaction of anaesthetics with electrical synapses

Abstract

Studies of the interaction of anaesthetics with various preparations, from whole animals to organic solvents, have been continuing since Overton and Meyer found a correlation between anaesthetic potency and solubility in olive oil1. Although the physiological basis of anaesthesia is far from clear, one popular hypothesis is that anaesthetics act primarily by interfering with the normal functioning of chemical synapses2–4. This hypothesis is supported by experiments showing that these synapses are more sensitive to both local and general anaesthetics than are axons. The effects of anaesthetics on electrical synapses (gap-junctions or nexus) have not previously been studied. These ubiquitous structures, presumably responsible for cell-to-cell communication5, are found in most vertebrate and invertebrate tissues. We report here the effects of several anaesthetics on electronic coupling between nerve cells, and show that electrical synapses are less sensitive to most anaesthetics than are chemical synapses and axonal membranes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seeman, P. Pharmac. Rev. 24, 583–655 (1972).

    CAS  Google Scholar 

  2. Richards, C. D. & White, A. F. J. Physiol., Lond. 252, 241–257 (1975).

    Article  CAS  Google Scholar 

  3. Richter, J., Landau, E. M. & Cohen, S. Molec. Pharmac. 13, 548–559 (1977).

    CAS  Google Scholar 

  4. Katz, Y. & Simon, S. A. Biochim. biophys. Acta. 471, 1–15 (1977).

    Article  CAS  Google Scholar 

  5. Loewenstein, W. R. Biochim. biophys. Acta 560, 1–65 (1979).

    CAS  PubMed  Google Scholar 

  6. Johnson, G. E. J. comp. Neurol. 36, 323–373 (1924).

    Article  Google Scholar 

  7. Watanabe, A. & Grundfest, H. J. gen. Physiol. 45, 267–308 (1961).

    Article  CAS  Google Scholar 

  8. Johnston, M. F. & Ramón, F. J. Physiol., Lond. (in the press).

  9. Johnston, M. F. thesis, Duke Univ., Durham, North Carolina (1979).

  10. Oxford, G. & Swenson, R. Biophys. J. 26, 585–590 (1979).

    Article  CAS  Google Scholar 

  11. Lee, A. G. Molec. Pharmac. 13, 474–487 (1977).

    CAS  Google Scholar 

  12. Strichartz, G. Anaesthesiology 45, 421–441 (1969).

    Article  Google Scholar 

  13. Simon, S. A. & Bennett, P. B. in Molecular Mechanisms of Anaesthesia Vol. II (ed. Fink, B. R.) (Raven, New York, in the press).

  14. Reyes, J. & Latorre, R. Biophys. J. 28, 185–196 (1979).

    Article  Google Scholar 

  15. Trudell, J. R., Hubbell, W. L. & Cohen, E. N. Biochim. biophys. Acta 291, 321–327 (1973).

    Article  CAS  Google Scholar 

  16. Hille, B. J. gen. Physiol. 69, 475–496 (1977).

    Article  CAS  Google Scholar 

  17. Armstrong, C. M. & Binstock, L. J. gen. Physiol. 48, 265–277 (1964).

    Article  CAS  Google Scholar 

  18. Richards, C. D. et al. Nature 276, 775–779 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Hill, M. W. Biochim. biophys. Acta 356, 117–124 (1974).

    Article  CAS  Google Scholar 

  20. Kondo, M. & Kasai, M. Biochim. biophys. Acta 311, 391–395 (1973).

    Article  CAS  Google Scholar 

  21. Jain, M. K., Wu, N. M. & Wray, L. V. Nature 255, 494–496 (1975).

    Article  ADS  CAS  Google Scholar 

  22. Nakagaki, M. & Ichinashi, H. Yakusaku Zussh. 98, 577–584 (1978).

    Article  CAS  Google Scholar 

  23. Woodson, P. B. J., Traynor, M. E., Schalapfer, W. T. & Barondes, S. H. Nature 260, 797–799 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Elliott, J. R. & Haydon, D. A. Biochim. biophys. Acta 557, 259–263 (1979).

    Article  CAS  Google Scholar 

  25. Gage, P. W., McBurney, R. N. & van Helden, D. J. Physiol., Lond. 274, 279–298 (1978).

    Article  CAS  Google Scholar 

  26. Gage, P. W., McBurney, R. N. & Schneider, G. T. J. Physiol., Lond. 244, 409–429 (1975).

    Article  CAS  Google Scholar 

  27. Unwin, P. N. T. & Zampighi, G. Nature 283, 545–549 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Elliott, J. R. & Haydon, D. A. Biochim. biophys. Acta 557, 259–263 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, M., Simon, S. & Ramón, F. Interaction of anaesthetics with electrical synapses. Nature 286, 498–500 (1980). https://doi.org/10.1038/286498a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/286498a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing