Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves

Abstract

Synthetic pyrethroids are a new class of highly active insecticides with great potential for practical application1. They are generally recognized as neurotoxicants that act directly on excitable membranes2,3. Previous studies have shown that the effect of the pyrethroid allethrin closely resembles that of the classical insecticide dichlorodiphenyl trichloroethane (DDT) in the peripheral nervous system of Xenopus laevis4,5. Both compounds induce intense repetitive activity in sense organs and in myelinated nerve fibres. In the lateral-line sense organ this repetitive activity increases with cooling, a phenomenon that may be related to the negative temperature coefficient of toxicity of DDT6 and pyrethroids7 in insects. In frog node of Ranvier, DDT slows the closing of sodium channels that open during depolarization8,9 so that a prolonged sodium tail current persists after the membrane has been repolarized. We have recently found that the pyrethroid allethrin10 causes a similar sodium tail current in the nodal membrane of Xenopus. Pyrethroids11,12 and DDT13,14 are also known to cause prolongation of the sodium current together with repetitive activity in nerve fibres of invertebrates. The prolonged sodium current is thought to be directly responsible for this repetitive activity3,15, and it has been suggested that the sodium channel in the nerve membrane is the major target site of pyrethroids and DDT-like compounds10,12. We have now investigated the mechanism by which pyrethroids and DDT prolong the sodium current in Xenopus nodal membrane. Our results show that these compounds—despite marked differences in chemical structure—modify sodium channel gating in a strikingly similar way and reduce selectively the rate of closing of the activation gate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Elliott, M., Janes, N. F. & Potter, C. A. Rev. Ent. 23, 443–469 (1978).

    Article  Google Scholar 

  2. Narahashi, T. in Insecticide Biochemistry and Physiology (ed. Wilkinson, C. F.) 327–352 (Plenum, New York, 1976).

    Book  Google Scholar 

  3. Wouters, W. & van den Bercken, J. Gen. Pharmac. 9, 387–398 (1978).

    Article  CAS  Google Scholar 

  4. van den Bercken, J., Akkermans, L. M. A. & van der Zalm, J. M. Eur. J. Pharmac. 21, 95–106 (1973).

    Article  CAS  Google Scholar 

  5. van den Bercken, J., Kroese, A. B. A. & Akkermans, L. M. A. in Neurotoxicology of Insecticides and Pheromones (ed. Narahashi, T.) 183–210 (Plenum, New York, 1979).

    Book  Google Scholar 

  6. Eaton, J. L. & Sternburg, J. J. Insect Physiol. 10, 471–485 (1964).

    Article  CAS  Google Scholar 

  7. Harris, C. R. & Kinoshita, G. B. J. econ. Ent. 70, 215–218 (1977).

    Article  CAS  Google Scholar 

  8. Hille, B. J. gen. Physiol. 51, 199–219 (1968).

    Article  CAS  Google Scholar 

  9. Årnhem, P. & Frankenhaeuser, B. Acta physiol. scand. 91, 502–511 (1974).

    Article  Google Scholar 

  10. van den Bercken, J. & Vijverberg, H. P. M. in Insect Neurobiology and Pesticide Action, 79–85 (Society of Chemical Industry, London, 1980).

    Google Scholar 

  11. Narahashi, T. Pestic. Sci. 7, 267–272 (1976).

    Article  CAS  Google Scholar 

  12. Narahashi, T. & Lund, A. E. in Insect Neurobiology and Pesticide Action, 497–505 (Society of Chemical Industry, London, 1980).

    Google Scholar 

  13. Narahashi, T. & Haas, H. G. J. gen. Physiol. 51, 177–198 (1968).

    Article  CAS  Google Scholar 

  14. Pichon, Y. & Boistel, J. J. Physiol., Paris 61, 373–374 (1969).

    Google Scholar 

  15. van den Bercken, J. Eur. J. Pharmac. 20, 205–214 (1972).

    Article  CAS  Google Scholar 

  16. Dodge, F. A. & Frankenhaeuser, B. J. Physiol. Lond. 143, 76–90 (1958).

    Article  CAS  Google Scholar 

  17. Hodgkin, A. L. & Huxley, A. F. J. Physiol., Lond. 116, 500–544 (1952).

    Article  Google Scholar 

  18. Chiu, S. Y. J. Physiol., Lond. 273, 573–596 (1977).

    Article  CAS  Google Scholar 

  19. Dubois, J. M. & Bergman, C. Nature 266, 741–742 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Vijverberg, H. P. M. & van den Bercken, J. Eur. J. Pharmac. 58, 501–504 (1979).

    Article  CAS  Google Scholar 

  21. Farnham, A. W. Pestic. Sci. 8, 631–636 (1977).

    Article  Google Scholar 

  22. Sawicki, R. M. Nature 275, 443–444 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Hille, B. J. gen. Physiol. 69, 497–515 (1977).

    Article  CAS  Google Scholar 

  24. Dodge, F. A. thesis, Rockefeller Inst. (1963).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijverberg, H., van der Zalm, J. & van den Bercken, J. Similar mode of action of pyrethroids and DDT on sodium channel gating in myelinated nerves. Nature 295, 601–603 (1982). https://doi.org/10.1038/295601a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295601a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing