Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions

Abstract

Dynorphin is a 17 amino acid opioid peptide which was originally isolated and characterized from pig neurohypophysis and gut extracts1–3. It contains a leucine-enkephalin (Leu-enkephalin) sequence at the amino terminus and has an unusually potent in vitro opiate activity in the guinea pig ileum longitudinal muscle/myenteric plexus preparation1–4. Immunohistochemical studies have shown that perikarya, nerve fibres and terminals widely distributed throughout the central nervous system5,6 are immunoreactive for both dynorphin1–17 and α-neo-endorphin6,7, another Leu-enkephalin-containing opioid peptide which is structurally related to dynorphin (Fig. 1) and was isolated from hypothalamus8. But although the regional distributions of α-neo-endorphin and dynorphin1–17 in rat brain, as measured by radioimmunoassay (RIA), are similar, the molar ratio of the two peptides seems to vary greatly from region to region, with α-neo-endorphin being present in much higher concentrations than dynorphini1–17 9–11. We now report that dynorphin1–8, an amino-terminal fragment (Fig. 1), which has only 3% of the opioid potency of dynorphin1–17, (ref. 4), is present in up to 10-fold higher concentrations in brain than dynorphhi1–17 immunoreactivity. We further show that dynorphin1–8, but not dynorphin1–17, occurs in approximately equimolar concentrations with α-neo-endorphin in all brain regions examined, suggesting a close biosynthetic relationship between α-neo-endorphin and dynorphin1–8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldstein, A., Tachibana, S., Lowney, L. I., Hunkapillar, M. & Hood, L. Proc. natn. Acad. Sci. U.S.A. 76, 6666–6670 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Goldstein, A., Fischli, W., Lowney, L., Hunkapillar, M. & Hood, L. Proc. natn. Acad. Sci. U.S.A. 78, 7219–7223 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Tachibana, S., Araki, K., Ohya, S. & Yoshida, S. Nature 295, 339–340 (1982).

    Article  ADS  CAS  Google Scholar 

  4. Chavkin, C. & Goldstein, A. Proc. natn. Acad. Sci. U.S.A. 78, 6543–6547 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Watson, S. J., Akil, H., Ghazarossian, V. E. & Goldstein, A. Proc. natn. Acad. Sci. U.S.A. 78, 1260–1263 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Weber, E., Roth, K. A. & Barchas, J. D. Proc. natn. Acad. Sci. U.S.A. 79, 3062–3066 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Weber, E., Roth, K. A. & Barchas, J. D. Biochem. biophys. Res. Commun. 103, 951–958 (1981).

    Article  CAS  Google Scholar 

  8. Kangawa, K., Minamino, H., Chino, N., Sakakibara, S. & Matsuo, H. Biochem. biophys. Res. Commun. 99, 871–877 (1981).

    Article  CAS  Google Scholar 

  9. Goldstein, A. & Ghazarossian, V. Proc. natn. Acad. Sci. U.S.A. 77, 6207–6210 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Minamino, N., Kitamura, K., Hayashi, Y., Kangawa, K. & Matsuo, H. Biochem. biophys. Res. Commun. 102, 226–234 (1981).

    Article  CAS  Google Scholar 

  11. Maysinger, D. et al. Neuropeptides (in the press).

  12. Minamino, N., Kangawa, K., Fukuda, A. & Matsuo, H. Biochem. biophys. Res. Commun. 95, 1475–1481 (1980).

    Article  CAS  Google Scholar 

  13. Seizinger, B., Hollt, V. & Herz, A. Biochem. biophys. Res. Commun. 102, 197–205 (1981).

    Article  CAS  Google Scholar 

  14. Weber, E., Evans, C. J., Chang, J-K. & Barchas, J. D. J. Neurochem. 38, 436–447 (1982).

    Article  CAS  Google Scholar 

  15. Zakarian, S. & Smyth, D. G. Proc. natn. Acad. Sci. U.S.A. 76, 5972–5976 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Herman, B. H., Leslie, F. & Goldstein, A. Life Sci. 27, 883–892 (1980).

    Article  CAS  Google Scholar 

  17. Leslie, F. M. & Goldstein, A. Neuropeptides (in the press).

  18. Chavkin, C., James, I. F. & Goldstein, A. Science 215, 413–415 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Hewlett, W. A., Akil, H. & Barchas, J. D. Abstr. Proc. int. Narcotics Res. Conl. Kyoto, Japan, 9 (Kodansha, Tokyo, 1981).

    Google Scholar 

  20. Glowinsky, J. & Iversen, L. J. Neurochem. 13, 655–669 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, E., Evans, C. & Barchas, J. Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299, 77–79 (1982). https://doi.org/10.1038/299077a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing