Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two contrary modes of chemolithotrophy in the same archaebacterium

Abstract

Sulphur-dependent archaebacteria, which are found around nearly boiling continental solfataric springs and mud holes, can be assigned to two distinct branches: the aerobic, sulphur-oxidizing Sulfolobales1–4 and the strictly anaerobic sulphur-reducing Thermoproteales5–7. Here, we report the isolation of a group of extremely thermophilic solfataric archaebacteria that are able to grow either strictly anaerobically by reduction, or fully aerobically by oxidation of molecular sulphur, depending on the oxygen supply. We have also established that the ability to grow in these two ways is shared by Sulfolobus brierleyi, a well-known less thermophilic sulphur-oxidizing archaebacterium capable of ore-leaching8. The phenomenon may be dependent on a fundamental switch in genome expression. These organisms might represent the primitive forerunners of sulphur-oxidizing archaebacteria, meeting their energy requirements either by oxidation or by reduction of the same element.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brock, T. D., Brock, K. M., Belley, R. T. & Weiss, R. L. Archs Microbiol. 84, 54–68 (1972).

    CAS  Google Scholar 

  2. Brierley, C. L. & Brierley, J. A. Can. J. Microbiol. 19, 183–188 (1973).

    Article  CAS  Google Scholar 

  3. Zillig, W. et al. Archs Microbiol. 125, 259–269 (1980).

    Article  CAS  Google Scholar 

  4. Woese, C. R., Gupta, R., Hahn, C. M., Zillig, W. & Tu, J. System appl. Microbiol. 5, 97–105 (1984).

    Article  CAS  Google Scholar 

  5. Zillig, W. et al. Zbl. Bakt. Hyg., I. Abt. Orig. C2, 205–227 (1981).

    CAS  Google Scholar 

  6. Stetter, K. O. Nature 300, 258–260 (1982).

    Article  ADS  Google Scholar 

  7. Fischer, F., Zillig, W., Stetter, K. O. & Schreiber, G. Nature 301, 511–513 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Brierley, C. L. CRC crit. Rev. Microbiol. 6, 207–262 (1978).

    Article  CAS  Google Scholar 

  9. De Rosa, M., Gambacorta, A. & Bu'Lock, J. D. J. gen. Microbiol. 86, 156–164 (1975).

    Article  CAS  Google Scholar 

  10. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. Microbiol. Rev. 43, 260–296 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen, M. B. Archs Microbiol. 32, 270–277 (1959).

    CAS  Google Scholar 

  12. Wildgruber, G. et al. Archs Microbiol. 132, 31–36 (1982).

    Article  CAS  Google Scholar 

  13. Marmur, J. & Doty, P. J. molec. Biol. 5, 109–118 (1962).

    Article  CAS  Google Scholar 

  14. Steigerwaldt, A. G., Fanning, G. R., Sise-Ashbury, M. A. & Brenner, B. J. Can. J. Microbiol. 22, 121–137 (1976).

    Article  Google Scholar 

  15. Kessel, M. & Klink, F. Nature 287, 250–251 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Williams, W. J. Handbook of Anion Determination, 570–572 (Butterworths, London, 1979).

    Google Scholar 

  17. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  18. Burton, K. Biochem. J. 62, 315–322 (1956).

    Article  CAS  Google Scholar 

  19. Gillespie, S. & Gillespie, D. Biochem. J. 125, 481–487 (1971).

    Article  CAS  Google Scholar 

  20. Birnstiel, M. L., Sells, B. H. & Purdom, I. F. J. molec. Biol. 63, 21–39 (1972).

    Article  CAS  Google Scholar 

  21. Kelly, R. B., CozzareIli, N. R., Deutscher, M. P., Lehman, J. R. & Kornberg, A. J. biol. Chem. 245, 39–45 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segerer, A., Stetter, K. & Klink, F. Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313, 787–789 (1985). https://doi.org/10.1038/313787a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313787a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing