Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels

Abstract

The modulation of voltage-dependent calcium channels by hormones and neurotransmitters has important implications for the control of many Ca2+-dependent cellular functions including exocytosis and contractility1–7. We made use of electrophysiological techniques, including whole-cell patch-clamp recordings from dorsal root ganglion (DRG) neurones, to demonstrate a role for GTP-binding proteins (G-proteins) as signal transducers in the noradrenaline- and γ-aminobutyric acid (GABA)-induced inhibition of voltage-dependent calcium channels8–11. This action of the transmitters was blocked by: (1) preincubation of the cells with pertussis toxin (a bacterial exotoxin catalysing ADP-ribosylation of G-proteins12); or (2) intracellular administration of guanosine 5′-O-(2-thiodiphosphate) (GDP-β-S), a non-hydrolysable analogue of GDP that competitively inhibits the binding of GTP to G-proteins13. Our findings provide the first direct demonstration of the G-protein-mediated inhibition of voltage-dependent calcium channels by neurotransmitters. This mode of transmitter action may explain the ability of noradrenaline and GABA to presynaptically inhibit Ca2+-dependent neurosecretion from DRG sensory neurones4,5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kupferman, I. A. Rev. Neurosci. 2, 447–465 (1979).

    Article  Google Scholar 

  2. Shain, W. & Carpenter, D. O. Int. Rev. Neurobiol. 22, 205–250 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Dunlap, K. in The Mechanism of Gated Calcium Transport across Biological Membranes (eds Ohnishi, S. T. & Endo, M.) 87–97 (Academic, New York, 1981).

    Book  Google Scholar 

  4. Fischbach, G. D., Dunlap, K., Mudge, A. W. & Leeman, S. in Neurosecretion and Brain Peptides (eds Martin, J. B., Reichlin, S. & Bick, K. L.) 175–188 (Raven, New York, 1981).

    Google Scholar 

  5. Holz, G. G., Kream, R. M. & Dunlap, K. Soc. Neurosci Abstr. 11, 126 (1985).

    Google Scholar 

  6. Holz, G. G., Shefner, S. A. & Anderson, E. G. J. Neurosci. (in the press).

  7. Reuter, H. & Scholz, H. J. Physiol., Lond. 264, 49–62 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dunlap, K. & Fischbach, G. J. Physiol., Lond. 317, 519–535 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunlap, K. & Fischbach, G. Nature 276, 837–839 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Houslay, M. D. Trends biochem. Sci. 9, 39–40 (1984).

    Article  CAS  Google Scholar 

  11. Gilman, A. G. Cell 36, 577–579 (1984).

    CAS  PubMed  Google Scholar 

  12. Ui, M. Trends pharmac. Sci. 5, 277–279 (1984).

    Article  CAS  Google Scholar 

  13. Eckstein, F., Cassel, D., Levkovitz, H., Lowe, M. & Selinger, Z. J. biol. Chem. 254, 9829–9834 (1979).

    CAS  PubMed  Google Scholar 

  14. Dichter, M. & Fischbach, G. D. J. Physiol., Lond. 267, 281–298 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Katada, T., Bokoch, G. M., Northup, J. K., Ui, M. & Gilman, A. G. J. biol. Chem. 259, 3568–3577 (1984).

    CAS  PubMed  Google Scholar 

  16. Jakobs, K. H., Aktories, K. & Schultz, G. Adv. Cyclic Nucleotide Res. Protein Phosphor. 17, 135–143 (1984).

    CAS  Google Scholar 

  17. Rane, S. G. & Dunlap, K. Proc. natn. Acad. Sci. U.S.A. 83, 184–188 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Hamill, O., Marty, A., Neher, E., Sakman, B. & Sigworth, F.J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  19. Cassel, D., Eckstein, F., Lowe, M. & Selinger, Z. J. biol. Chem. 254, 9835–9838 (1979).

    CAS  PubMed  Google Scholar 

  20. Jakobs, K. H. Eur. J. Biochem. 132, 125–130 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Lemos, J. R. & Levitan, I. B. J. gen. Physiol. 83, 269–285 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Canfield, D. R. & Dunlap, K. Br. J. Pharmac. 82, 557–563 (1984).

    Article  CAS  Google Scholar 

  23. Dunlap, K. Br. J. Pharmac. 74, 579–585 (1981).

    Article  CAS  Google Scholar 

  24. Sabol, S. L. & Nirenberg, M. J. biol. Chem. 254, 1913–1920 (1979).

    CAS  PubMed  Google Scholar 

  25. Wojcik, W. J. & Neff, N. H. Molec. Pharmac. 25, 24–28 (1984).

    CAS  Google Scholar 

  26. Hazeki, O. & Ui, M. J. biol. Chem. 256, 2856–2862 (1981).

    CAS  PubMed  Google Scholar 

  27. Cote, T. E., Frey, E. A. & Sekura, R. D. J. biol. Chem. 259, 8693–8698 (1984).

    CAS  PubMed  Google Scholar 

  28. Forscher, P. & Oxford, G. S. J. gen. Physiol. 85, 743–763 (1985).

    Article  CAS  PubMed  Google Scholar 

  29. Neer, E., Lok, J. & Wolf, L. J. biol. Chem. 259, 14222–14229 (1984).

    CAS  PubMed  Google Scholar 

  30. Sternweis, P. C. & Robishaw, J. D. J. biol. Chem. 259, 13806–13813 (1984).

    CAS  PubMed  Google Scholar 

  31. Nakamura, T. & Ui, M. J. biol. Chem. 260, 3584–3593 (1985).

    CAS  PubMed  Google Scholar 

  32. Bradford, P. G. & Rubin, R. P. FEBS Lett. 183, 317–320 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Volpi, M. et al. Proc. natn. Acad. Sci. U.S.A. 82, 2708–2712 (1985).

    Article  ADS  CAS  Google Scholar 

  34. Cockcroft, S. & Comperts, B. Nature 314, 534–536 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Wallace, M. A. & Fain, J. N. J. biol. Chem. 260, 9527–9530 (1985).

    CAS  PubMed  Google Scholar 

  36. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holz, G., Rane, S. & Dunlap, K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672 (1986). https://doi.org/10.1038/319670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319670a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing