Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Existence of distinct sodium channel messenger RNAs in rat brain

Abstract

The sodium channel is a voltage-gated ionic channel essential for the generation of action potentials1–3. It has been reported that the sodium channels purified from the electric organ of Electrophorus electricus (electric eel)4,5 and from chick cardiac muscle6 consist of a single polypeptide of relative molecular mass (Mr) 260,000 (260K), whereas those purified from rat brain7 and skeletal muscle8 contain, in addition to the large polypeptide, two or three smaller polypeptides of Mr 37–45K. Recently, we have elucidated the primary structure of the Electrophorus sodium channel by cloning and sequencing the DNA complementary to its messenger RNA9. Despite the apparent homogeneity of the purified sodium channel preparations, several types of tetrodotoxin (or saxitoxin) binding sites or sodium currents have been observed in many excitable membranes10–19. The occurrence of distinguishable populations of sodium channels may be attributable to different states of the same channel protein or to distinct channel proteins. We have now isolated complementary DNA clones derived from two distinct rat brain mRNAs encoding sodium channel large polypeptides and present here the complete amino-acid sequences of the two polypeptides (designated sodium channels I and II), as deduced from the cDNA sequences. A partial DNA sequence complementary to a third homologous mRNA from rat brain has also been cloned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, A. L. & Huxley, A.F. J. Physiol., Lond. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  2. Agnew, W. S. A. Rev. Physiol. 46, 517–530 (1984).

    Article  CAS  Google Scholar 

  3. Catterall, W. A. Science 223, 653–661 (1984).

    ADS  CAS  PubMed  Google Scholar 

  4. Agnew, W. S., Levinson, S. R., Brabson, J. S. & Raftery, M. A. Proc. natn. Acad. Sci. U.S.A. 75, 2606–2610 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Miller, J. A., Agnew, W. S. & Levinson, S. R. Biochemistry 22, 462–470 (1983).

    Article  CAS  Google Scholar 

  6. Lombet, A. & Lazdunski, M. Eur. J. Biochem. 141, 651–660 (1984).

    Article  CAS  Google Scholar 

  7. Hartshorne, R. P. & Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 78, 4620–4624 (1981).

    Article  ADS  CAS  Google Scholar 

  8. Barchi, R. L. J. Neurochem. 40, 1377–1385 (1983).

    Article  CAS  Google Scholar 

  9. Noda, M. et al. Nature 312, 121–127 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Lombet, A., Renaud, J.-F., Chicheportiche, R. & Lazdunski, M. Biochemistry 20, 1279–1285 (1981).

    Article  CAS  Google Scholar 

  11. Lombet, A., Kazazoglou, T., Delpont, E., Renaud, J.-F. & Lazdunski, M. Biochem. biophys. Res. Commun. 110, 894–901 (1983).

    Article  CAS  Google Scholar 

  12. Renaud, J.-F. et al. J. biol. Chem. 258, 8799–8805 (1983).

    CAS  PubMed  Google Scholar 

  13. Sherman, S. J. & Catterall, W. A. in Regulation and Development of Membrane Transport Processes (ed. Graves, J. S.) 237–263 (Wiley, New York, 1985).

    Google Scholar 

  14. Barrett, J. N. & Crill, W. E. J. Physiol, Lond. 304, 231–249 (1980).

    Article  CAS  Google Scholar 

  15. Gundersen, C. B., Miledi, R. & Parker, I. Proc. R. Soc. B220, 131–140 (1983).

    ADS  CAS  Google Scholar 

  16. Jaimovich, E. et al. Eur. J. Physiol. 397, 1–5 (1983).

    Article  CAS  Google Scholar 

  17. Eick, R. T., Yeh, J. & Matsuki, N. Biophys. J. 45, 70–73 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Gilly, W. F. & Armstrong, C. M. Nature 309, 448–450 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Benoit, E., Corbier, A. & Dubois, J.-M. J. Physiol., Lond. 361, 339–360 (1985).

    Article  CAS  Google Scholar 

  20. Costa, M. R. C., Casnellie, J. E. & Catterall, W. A. J. biol. Chem. 257, 7918–7921 (1982).

    CAS  PubMed  Google Scholar 

  21. Costa, M. R. C. & Catterall, W. A. J. biol. Chem. 259, 8210–8218 (1984).

    CAS  PubMed  Google Scholar 

  22. Krebs, E. G. & Beavo, J. A. A. Rev. Biochem. 48, 923–959 (1979).

    Article  CAS  Google Scholar 

  23. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  24. Chou, P. Y. & Fasman, G. D. A. Rev. Biochem. 47, 251–276 (1978).

    Article  CAS  Google Scholar 

  25. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1984).

    Google Scholar 

  26. Armstrong, C. M. & Bezanilla, F. Nature 242, 459–461 (1973).

    Article  ADS  CAS  Google Scholar 

  27. Capaldi, R. A. & Vanderkooi, G. Proc. natn. Acad. Sci. U.S.A. 69, 930–932 (1972).

    Article  ADS  CAS  Google Scholar 

  28. Engelman, D. M. & Steitz, T.A. Cell 23, 411–422 (1981).

    Article  CAS  Google Scholar 

  29. Rice, C. M., Bell, J. R., Hunkapiller, M. W., Strauss, E. G. & Strauss, J. H. J. molec. Biol. 154, 355–378 (1982).

    Article  CAS  Google Scholar 

  30. Hubbard, S. C. & Ivatt, R. J. A. Rev. Biochem. 50, 555–583 (1981).

    Article  CAS  Google Scholar 

  31. Bause, E. Biochem. J. 209, 331–336 (1983).

    Article  CAS  Google Scholar 

  32. Armstrong, C. M. Physiol. Rev. 61, 644–683 (1981).

    Article  CAS  Google Scholar 

  33. Hille, B. J. gen. Physiol. 58, 599–619 (1971).

    Article  CAS  Google Scholar 

  34. Hille, B. J. gen. Physiol. 59, 637–658 (1972).

    Article  ADS  CAS  Google Scholar 

  35. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. in Atlas of Protein Sequence and Structure Vol. 5, Suppl. 3 (ed. Dayhoff, M. O.) 345–352 (National Biomedical Research Foundation, Silver Spring, Maryland, 1978).

    Google Scholar 

  36. Okayama, H. & Berg, P. Molec. cell. Biol. 2, 161–170 (1982).

    Article  CAS  Google Scholar 

  37. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  38. Goeddel, D. V. et al. Nature 290, 20–26 (1981).

    Article  ADS  CAS  Google Scholar 

  39. Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).

    Article  CAS  Google Scholar 

  40. Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. & Rutter, W. J. Biochemistry 18, 5294–5299 (1979).

    Article  CAS  Google Scholar 

  41. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  42. Noda, M. et al. Nature 295, 202–206 (1982).

    Article  ADS  CAS  Google Scholar 

  43. Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).

    Article  ADS  CAS  Google Scholar 

  44. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  45. Payvar, F., & Schimke, R. T. J. biol. Chem. 254, 7636–7642 (1979).

    CAS  PubMed  Google Scholar 

  46. Weinstock, R., Sweet, R., Weiss, M., Cedar, H. & Axel, R. Proc. natn. Acad. Sci. U.S.A. 75, 1299–l303 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, M., Ikeda, T., Kayano, T. et al. Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188–192 (1986). https://doi.org/10.1038/320188a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320188a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing