Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism

Abstract

Acidic amino acids, such as L-glutamate, are believed to be excitatory neurotransmitters in the mammalian brain1,2 and exert effects on several different receptors named after the selective agonists kainate, quisqualate and N-methyl-D-aspartate (NMDA)1. The first two receptors, collectively termed non-NMDA receptors, have been implicated in the mediation of synaptic transmission in many excitatory pathways in the central nervous system (CNS), whereas NMDA receptors, with few exceptions, do not appear to be involved2; this is typified in the hippocampus where there is a high density of NMDA receptors3 yet selective NMDA receptor antagonists, such as D-2-amino-5-phosphonovalerate (APV), do not affect synaptic potentials4–11. NMDA receptors have, however, been shown to be involved in long-term potentiation (LTP) in the hippocampus6–11, a form of synaptic plasticity12 which may be involved in learning and memory11. NMDA receptors have also been found to contribute to epileptiform activity in this region13,14. We now describe how NMDA receptors can participate during high-frequency synaptic transmission in the hippocampus, their involvement during low-frequency transmission being greatly suppressed by Mg2+. A frequency-dependent alleviation of this blockade provides a novel synaptic mechanism whereby a single neurotransmitter can transmit very different information depending on the temporal nature of the input. This mechanism could account for the involvement of NMDA receptors in the initiation of LTP and their contribution, in part, to epileptic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Tox. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  2. Watkins, J. C. Trends pharmac. Sci. 5, 373–376 (1984).

    Article  CAS  Google Scholar 

  3. Olverman, H. J., Jones, A. W. & Watkins, J. C. Nature 307, 460–462 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Crunelli, V., Forda, S., Collingridge, G. L. & Kelly, J. S. Nature 300, 450–452 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Koerner, J. F. & Cotman, C. W. Brain Res. 251, 105–115 (1982).

    Article  CAS  Google Scholar 

  6. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  7. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 338, 27P (1983).

    Google Scholar 

  8. Wigström, H. & Gustafsson, B. Neurosci. Lett. 44, 327–332 (1984).

    Article  Google Scholar 

  9. Harris, E. W., Ganong, A. H. & Cotman, C. W. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  10. Slater, N. T., Stelzer, A. & Galvan, M. Neurosci. Lett. 60, 25–31 (1985).

    Article  CAS  Google Scholar 

  11. Morris, R. G. M., Anderson, E., Lynch, G. S. & Baudry, M. Nature 319, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Bliss, T. V. P. & Lømo, T. J. Physiol., Lond. 232, 331–358 (1973).

    Article  CAS  Google Scholar 

  13. Hynes, M. A. & Dingledine, R. Soc. Neurosci. Abstr. 10, 229 (1984).

    Google Scholar 

  14. Herron, C. E., Williamson, R. & Collingridge, G. L. Neurosci. Lett. 61, 255–260 (1985).

    Article  CAS  Google Scholar 

  15. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 19–31 (1983).

    Article  CAS  Google Scholar 

  16. Coan, E. J. & Collingridge, G. L. Neurosci. Lett. 53, 21–26 (1985).

    Article  CAS  Google Scholar 

  17. Katz, B. & Miledi, R. J. Physiol., Lond. 168, 389–422 (1963).

    Article  CAS  Google Scholar 

  18. Hille, B., Woodhull, A. M. & Shapiro, B. I. Phil. Trans. R. Soc. B 270, 301–318 (1975).

    Article  CAS  Google Scholar 

  19. Hablitz, J. J. & Langmoen, I. A. J. Neurosci. 6, 102–106 (1986).

    Article  CAS  Google Scholar 

  20. Collingridge, G. L. Trends pharmac. Sci. 6, 407–411 (1985).

    Article  CAS  Google Scholar 

  21. Wigström, H., Gustafsson, B. & Huang, Y.-Y. Acta physiol. scand. 124, 474–478 (1985).

    Article  Google Scholar 

  22. Dingledine, R. J. Physiol., Lond. 343, 385–405 (1983).

    Article  CAS  Google Scholar 

  23. Heinemann, U., Hamon, B. & Konnerth, A. Neurosci. Lett. 47, 295–300 (1984).

    Article  CAS  Google Scholar 

  24. Ascher, P. & Nowak, L. J. Physiol., Lond. (in the press).

  25. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  Google Scholar 

  27. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Wigström, H., Gustafsson, B., Huang, Y.-Y. & Abrahams, W. C. Acta physiol. scand. 126, 317–319 (1986).

    Article  Google Scholar 

  29. Croucher, M. J., Collins, J. F. & Meldrum, B. S. Science 216, 889–901 (1982).

    Article  ADS  Google Scholar 

  30. Salt, T. E. Nature 322, 263–265 (1986).

    Article  ADS  CAS  Google Scholar 

  31. Dale, N. & Roberts, A. J. Physiol., Lond. 348, 527–543 (1984).

    Article  CAS  Google Scholar 

  32. Malinow, R. & Miller, J. P. Nature 320, 529–520 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herron, C., Lester, R., Coan, E. et al. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature 322, 265–268 (1986). https://doi.org/10.1038/322265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing