Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel

Abstract

The combination of complementary DNA expression and single-channel current analysis provides a powerful tool for studying the structure–function relationship of the nicotinic acetylcholine receptor (AChR) (refs 1–5). We have previously shown that AChR channels consisting of subunits from different species, expressed in the surface membrane of Xenopus oocytes, can be used to relate functional properties to individual subunits4. Here we report that, in extracellular solution of low divalent cation concentration, the bovine AChR channel has a smaller conductance than the Torpedo AChR channel. Replacement of the δ-subunit of the Torpedo AChR by the bovine δ-subunit makes the channel conductance similar to that of the bovine AChR channel. To locate the region in the δ-subunit responsible for this difference, we have constructed chimaeric δ-subunit cDNAs with different combinations of the Torpedo and bovine counterparts. The conductances of AChR channels containing chimaeric δ-subunits suggest that a region comprising the putative transmembrane segment M2 and the adjacent bend portion between segments M2 and M3 is involved in determining the rate of ion transport through the open channel.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  CAS  ADS  Google Scholar 

  2. Mishina, M. et al. Nature 313, 364–369 (1985).

    Article  CAS  ADS  Google Scholar 

  3. Sakmann, B. & Neher, E. A. Rev. Physiol. 46, 455–472 (1984).

    Article  CAS  Google Scholar 

  4. Sakmann, B. et al. Nature 318, 538–543 (1985).

    Article  CAS  ADS  Google Scholar 

  5. Mishiha, M. et al. Nature 321, 406–411 (1986).

    Article  ADS  Google Scholar 

  6. Takai, T. et al. Nature 315, 761–764 (1985).

    Article  CAS  ADS  Google Scholar 

  7. McLaughlin, S. G. A., Szabo, G. & Eisenman, G. J. gen. Physiol. 58, 667–687 (1971).

    Article  CAS  Google Scholar 

  8. Hille, B., Woodhull, A. M. & Shapiro, B. I. Phil. Trans. R. Soc. Lond. B 270, 301–318 (1975).

    Article  CAS  Google Scholar 

  9. Marty, A. J. Physiol., Paris 76, 523–527 (1980).

    CAS  Google Scholar 

  10. Noda, M. et al. Nature 302, 528–532 (1983).

    Article  CAS  ADS  Google Scholar 

  11. Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 80, 1111–1115 (1983).

    Article  CAS  ADS  Google Scholar 

  12. Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 80, 2067–2071 (1983).

    Article  CAS  ADS  Google Scholar 

  13. Guy, H. R. Biophys. J. 45, 249–261 (1984).

    Article  CAS  ADS  Google Scholar 

  14. Finer-Moore, J. & Stroud, R. M. Proc. natn. Acad. Sci. U.S.A. 81, 155–159 (1984).

    Article  CAS  ADS  Google Scholar 

  15. Kubo, T. et al. Eur. J. Biochem. 149, 5–13 (1985).

    Article  CAS  Google Scholar 

  16. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 83, 2719–2723 (1986).

    Article  CAS  ADS  Google Scholar 

  17. Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittmann-Liebold, B. & Hucho, F. EMBO J. 5, 1815–1819 (1986).

    Article  Google Scholar 

  18. Hucho, F., Oberthür, W. & Lottspeich, F. FEBS Lett. 205, 137–142 (1986).

    Article  CAS  Google Scholar 

  19. Konarska, M. M., Padgett, R. A., & Sharp, P. A. Cell 38, 731–736 (1984).

    Article  CAS  Google Scholar 

  20. Methfessel, C. et al. Pflügers Arch. ges. Physiol. (in the press).

  21. Noda, M. et al. Nature 301, 251–255 (1983).

    Article  CAS  ADS  Google Scholar 

  22. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  23. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imoto, K., Methfessel, C., Sakmann, B. et al. Location of a δ-subunit region determining ion transport through the acetylcholine receptor channel. Nature 324, 670–674 (1986). https://doi.org/10.1038/324670a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324670a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing