Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo protein–DNA interactions in a glucocorticoid response element require the presence of the hormone

Abstract

Transcriptional activation of gene expression by glucocorticoid hormones is mediated by the interaction of hormone–receptor complexes with specific DNA sequences called glucocorticoid responsive elements (GREs) (refs 1–3, see ref. 4 for review). Deletion of this sequence abolishes glucocorticoid induction of transcription4–8. According to a current model, activation of the cytoplasmic receptor protein by hormone binding leads to its increased affinity for and translocation to the nucleus4. However, recent reports that the oestradiol and progesterone receptors are localized in the nucleus in the absence of steroid9–11 led us to examine whether the free receptor interacts in vivo with its DNA binding site in the absence of hormone binding. We used the genomic footprinting technique12–15 to show that changes in in vivo protein–DNA interactions within the GREs of the tyrosine aminotransferase gene (TAT) can be detected only after hormone treatment in hepatoma cells. Such changes are not detected in fibroblast cells, in which the TAT gene is not expressed. Many of the changes in dimethylsulphate reactivity observed in the living cell are also found in vitro using cloned DNA and a partially purified glucocorticoid receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Payvar, F. P. et al. Cell 35, 381–392 (1983).

    Article  CAS  Google Scholar 

  2. Scheidereit, C., Geisse, S., Westphal, H. M. & Beato, M. Nature 304, 749–752 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Van der Ahe, D. et al. Nature 313, 706–709 (1985).

    Article  ADS  Google Scholar 

  4. Yamamoto, K. R. A. Rev. Genet. 19, 209–252 (1985).

    Article  CAS  Google Scholar 

  5. Hynes, N. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3637–3641 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Renkawitz, R., Schütz, G., von der Ahe, D. & Beato, M. Cell 37, 503–510 (1984).

    Article  CAS  Google Scholar 

  7. Karin, M. et al. Nature 308, 513–519 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Miksicek, R. et al. Cell 46, 283–290 (1986).

    Article  CAS  Google Scholar 

  9. King, W. J. & Greene, G. L. Nature 307, 745–747 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Welshons, W. K., Liebermann, M. E. & Gorski, J. Nature 307, 747–749 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Perrot-Applanat, M., Logeat, F., Groyer-Picard, M. T. & Milgrom, E. Endocrinology 116, 1473–1484 (1985).

    Article  CAS  Google Scholar 

  12. Church, G. M. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 81, 1991–1995 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Church, G. M., Ephrussi, A., Gilbert, W. & Tonegawa, S. Nature 313, 798–801 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Nick, H. & Gilbert, W. Nature 313, 795–797 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Ephrussi, A., Church, G. M., Tonegawa, S. & Gilbert, W. Science 227, 134–140 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Becker, P. B., Renkawitz, R. & Schütz, G. EMBO J. 3, 2015–2020 (1984).

    Article  CAS  Google Scholar 

  17. Jantzen, M. et al. (in preparation).

  18. Zaret, K. S. & Yamamoto, K. R. Cell 38, 29–38 (1984).

    Article  CAS  Google Scholar 

  19. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499 (1978).

    Article  Google Scholar 

  20. Ogata, R. T. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 75, 5851–5854 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Scheidereit, C. & Beato, M. Proc. natn. Acad. Sci. U.S.A. 81, 3029–3033 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Öfverstedt, L. G. et al. Biochim. biophys. Acta 782, 120–126 (1984).

    Article  Google Scholar 

  23. Gininger, E., Varnum, S. M. & Ptashne, M. Cell 40, 767–774 (1985).

    Article  Google Scholar 

  24. Kruskal, W. H. Ann. math. Statist. 23, 525–540 (1952).

    Article  Google Scholar 

  25. Singh, V. B. & Moudgil, V. K. J. biol. Chem. 260, 3684–3690 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, P., Gloss, B., Schmid, W. et al. In vivo protein–DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature 324, 686–688 (1986). https://doi.org/10.1038/324686a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/324686a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing