Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation

Abstract

Tyrosine-specific protein phosphorylation has been implicated in the regulation of cell transformation and proliferation1,2. However, recent studies have shown that the expression of protein tyrosine kinases in adult brain is very high, suggesting that tyrosine-specific protein phosphorylation may also have a role in the regulation of neuronal function3–6. Although a number of substrate proteins are phosphorylated on tyrosine residues, the functional alteration of proteins by tyrosine phosphorylation has previously been convincingly demonstrated only for protein tyrosine kinases7–9. The nicotinic acetylcholine receptor, a neurotransmitter-gated ion channel, is phosphorylated by a protein tyrosine kinase in post-synaptic membranes in vitro and in vivo10,11. We demonstrate here that this tyrosine phosphorylation increases the rate of the rapid phase of desensitization of the nicotinic receptor, as measured by single channel recording of purified nicotinic acetylcholine receptor, when reconstituted in lipid vesicles. These data provide direct evidence for the regulation of ion channel properties by tyrosine phosphorylation. The results, which demonstrate a functional role of tyrosine phosphorylation in the nervous system, suggest a widespread role for tyrosine phosphorylation in neuronal signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hunter, T. & Cooper, J. A. A. Rev. Biochem. 54, 897–930 (1983).

    Article  Google Scholar 

  2. Sefton, B. M. Curr. Topics microbiol. Immun. 123, 40–72 (1986).

    Google Scholar 

  3. Cotton, P. C. & Brugge, J. S. Molec. cell. Biol. 3, 1157–1162 (1983).

    Article  CAS  Google Scholar 

  4. Sudol, M. & Hanafusa, H. Molec. cell. Biol. 6, 2839–2846 (1986).

    Article  CAS  Google Scholar 

  5. Hirano, A. A., Greengard, P. & Huganir, R. L. J. Neurochem. 50, 1447–1455 (1988).

    Article  CAS  Google Scholar 

  6. Pang, D. T., Wang, J. K. T., Valtorta, F., Benfenati, F. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 85, 762–766 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Rosen, O. M., Herrera, R., Olowe, Y., Petruzzelli, J. M. & Cobb, M. H. Proc. natn. Acad. Sci. U.S.A. 80, 3237–3240 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Courtneidge, S. A. EMBO J. 4, 1471–1477 (1985).

    Article  CAS  Google Scholar 

  9. Cooper, J. A. & King, C. S. Molec. cell. Biol. 6, 4467–4477 (1986).

    Article  CAS  Google Scholar 

  10. Huganir, R. L., Miles, K. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 81, 6968–6972 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Smith, M. M., Merlie, J. P. & Lawrence, J. C. Proc. natn. Acad. Sci. U.S.A. 84, 6601–6605 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Tank, D. W., Huganir, R. L., Greengard, P. & Webb, W. W. Proc. natn. Acad. Sci. U.S.A. 80, 5129–5133 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Sakmann, B., Patlak, J. & Potter, L. T. Nature 286, 71–73 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Hamill, O. P. & Sakmann, B. Nature 286, 462–464 (1981).

    Article  ADS  Google Scholar 

  15. Walker, J. W., Jakeyasu, K. & McNamee, M. G. Biochemistry 21, 5384–5389 (1982).

    Article  CAS  Google Scholar 

  16. Huganir, R. L., Delcour, A. H., Greengard, P. & Hess, G. P. Nature 321, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Ohtsuka, M., Ihara, S., Ogawa, R., Watanabe, T. & Watanabe, Y. Int. J. Cancer 34, 855–861 (1984).

    Article  CAS  Google Scholar 

  18. Huganir, R. L. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 80, 1130–1134 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Huganir, R. L., Albert, K. A. & Greengard, P. Soc. Neurosci. Abstr. 9, 578 (1983).

    Google Scholar 

  20. Safran, A., Sagi-Eisenberg, R., Neumann, D. & Fuchs, S. J. biol. Chem. 262, 10506–10510 (1987).

    CAS  PubMed  Google Scholar 

  21. Middleton, P., Jaramillo, F. & Scheutze, S. M. Proc. natn. Acad. Sci. U.S.A. 83, 4967–4971 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Albuquerque, E. X., Deshpande, S. S., Aracava, Y., Alkondon, M. & Daly, J. W. FEBS Lett. 199, 113–120 (1986).

    Article  CAS  Google Scholar 

  23. Eusebi, F., Molinaro, M. & Zani, B. M. J. Cell Biol. 100, 1339–1342 (1985).

    Article  CAS  Google Scholar 

  24. Middleton, P., Rubin, L. L. & Schuetze, S. M., J. Neurosci. 8, 3405–3412 (1988).

    Article  CAS  Google Scholar 

  25. Miles, K., Greengard, P. & Huganir, R. L. Neuron (submitted).

  26. Mulle, C., Benoit, P., Pinset, C., Roa, M. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 85, 5728–5732 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Krnjević, K. & Miledi, R. J. Physiol. 140, 440–461 (1958).

    PubMed  PubMed Central  Google Scholar 

  28. Magleby, K. S. & Pallotta, B. S. J. Physiol. 316, 225–250 (1981).

    Article  CAS  Google Scholar 

  29. Changeux, J.-P., Devillers-Thiery, A. & Chemouilli, P. Science 225, 1335–1345 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Huganir, R. L. & Racker, E. J. biol. Chem. 257, 9372–9378 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopfield, J., Tank, D., Greengard, P. et al. Functional modulation of the nicotinic acetylcholine receptor by tyrosine phosphorylation. Nature 336, 677–680 (1988). https://doi.org/10.1038/336677a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336677a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing