Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains

Abstract

THE function of the frizzled (fz) locus in Drosophilia melanogaster is required to coordinate the cytoskeletons of epidermal cells to produce a parallel array of cuticular hairs and bristles (for example on the wild-type wing all hairs point towards the distal tip)1,2. In fz mutants it is not the structure of individual hairs and bristles that is altered, but their orientation with respect to their neighbours and the organism as a whole. Mitotic clone analysis3 indicates that fz has two functions in the developing wing. It is required for the proximal-distal transmission of an intercellular polarity signal, a process that is expected to be at least partly extracellular. It is also required for cells to respond to the polarity signal, which is expected to be a cytoplasmic function. The fz locus could encode either one bifunctional or two single-function proteins. We report here that, in pupae, fz produces a messenger RNA that encodes a protein with seven putative transmembrane domains. Thus, the Fz protein should contain both extracellular and cytoplasmic domains, which could function in the transmission and interpreta-tion of polarity information, respectively. This is the first reported sequence for the protein product of a tissue polarity gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gubb, D. & Garcia-Bellido, A. J. Embryol. exp. Morph. 68, 37–57 (1982).

    CAS  PubMed  Google Scholar 

  2. Adler, P. N., Charlton, J. & Vinson, C. Devl Genet. 8, 99–119 (1987).

    Article  Google Scholar 

  3. Vinson, C. R. & Adler, P. N. Nature 329, 549–551 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Bingham, P. M., Levis, R. & Rubin, G. M. Cell 25, 693–704 (1981).

    Article  CAS  Google Scholar 

  5. Searles, L. L., Jokerst, R. S., Bingham, P. M., Voelker, R. A. & Greenleaf, A. L. Cell 31, 585–592 (1982).

    Article  CAS  Google Scholar 

  6. Vinson, C. R. thesis Univ. Virginia (1987).

  7. Kyte, J. & Doolittle, R. F. J. molec. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  8. Engelman, D. M., Steitz, T. A. & Goldman, A. A. Rev. biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

  9. von Heijne, G. J. molec. Biol. 184, 99 (1985).

    Article  CAS  Google Scholar 

  10. Brandl, C. J. & Deber, C. M. Proc. natn. Acad. Sci. U.S.A. 83, 917–921 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Dohlman, H. G., Caron, M. G. & Lefkowitz, R. J. Biochemistry 26, 2657–2663 (1987).

    Article  CAS  Google Scholar 

  12. Pearson, W. R. & Lipman, D. J. Proc. natn. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Lawrence, P. A. J. exp. Biol. 49, 607–620 (1966).

    Google Scholar 

  14. Nardi, J. B. & Kafatos, F. V. J. Embryol. exp. Morph. 136, 489–512 (1976).

    Google Scholar 

  15. Tucker, J. B. J. Embryol. exp. Morph. 65, 1–18 (1981).

    CAS  PubMed  Google Scholar 

  16. Gilman, A. G. A. Rev. Biochem. 56, 615–649 (1987).

    Article  CAS  Google Scholar 

  17. Kobilka, B. K. et al. Science 240, 1310–1316 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Poole, S. J., Kauvar, B. D. & Kornberg, T. Cell 40, 37–43 (1985).

    Article  CAS  Google Scholar 

  19. Cavener, D. R. Nucleic. Acids Res. 15, 1353–1361 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinson, C., Conover, S. & Adler, P. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989). https://doi.org/10.1038/338263a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338263a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing