Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops

Abstract

THE telomeric ends of eukaryotic chromosomes are composed of simple repeating sequences in which one DNA strand contains short tracts of guanine residues alternating with short tracts of A/T-rich sequences1,2. The guanine-rich strand is always oriented in a 5′–3′ direction towards the end of the chromosome and is extended to produce a 3′ overhang of about two repeating units in species where the telomeric terminus is known3,4. This overhang has been implicated in the formation of several unusual intra- and intermolecular DNA structures5–9, although none of these structures has been characterized fully. We now report that oligo-nucleotides encoding Tetrahymena telomeres dimerize to form stable complexes in solution. This salt-dependent dimerization is mediated entirely by the 3′-terminal telomeric overhang (TT-GGGGTTGGGG) and produces complexes in which the N7 position of every guanine in the overhangs is chemically inaccessible. We therefore propose that telomeric DNA dimerizes by hydrogen bonding between two intramolecular hairpin loops5, to form anti-parallel quadruplexes containing cyclic guanine base tetrads. These novel hairpin dimers may be important in telomere association and recombination and could also provide a general mechanism for pairing two double helices in other recombinational processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blackburn, E. H. & Szostak, J. W. A. Rev. Biochem. 53, 163–194 (1984).

    Article  CAS  Google Scholar 

  2. Weiner, A. M. Cell 52, 155–157 (1988).

    Article  CAS  Google Scholar 

  3. Henderson, E. R. & Blackburn, E. H. Molec. cell Biol. 9, 345–348 (1989).

    Article  CAS  Google Scholar 

  4. Klobutcher, L. A., Swanton, M. T., Donini, P. & Prescott, D. M. Proc. natn. Acad. Sci. U.S.A. 78, 3015–3019 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Henderson, E., Hardin, C. C., Walk, S. K., Tinoco, I. & Blackburn, E. H. Cell 51, 899–908 (1987).

    Article  CAS  Google Scholar 

  6. Lipps, H. J., Gruissem, W. & Prescott, D. M. Proc. natn. Acad. Sci. U.S.A. 79, 2495–2499 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Oka, Y. & Thomas, C. A. Nucleic Acids Res. 15, 8877–8898 (1987).

    Article  CAS  Google Scholar 

  8. Sen, D. & Gilbert, W. Nature 334, 364–366 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Cech, T. R. Nature 332, 777–778 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Blackburn, E. H. & Gall, J. G. J. molec. Biol. 120, 33–53 (1978).

    Article  CAS  Google Scholar 

  11. Hope, I. A. & Struhl, K. EMBO J. 6, 2781–2784 (1987).

    Article  CAS  Google Scholar 

  12. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  13. Herr, W. Proc. natn. Acad. Sci. U.S.A. 82, 8009–8013 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Saenger, W. Principles of Nucleic Acid Structure 315–320 (Springer, New York, 1984).

    Book  Google Scholar 

  15. Zimmerman, S. B., Cohen, G. H. & Davies, D. R. J. molec. Biol. 92, 181–192 (1975).

    Article  CAS  Google Scholar 

  16. Mathieu, F., Metz, B., Moras, D. & Weiss, R. J. Am. chem. Soc. 100, 4412–4416 (1978).

    Article  CAS  Google Scholar 

  17. Howard, F. B. & Miles, H. T. Biochemistry 21, 6736–6745 (1982).

    Article  CAS  Google Scholar 

  18. Chattopadhyaya, R., Ikuta, S., Grzeskowiak, K. & Dickerson, R. E. Nature 334, 175–179 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Price, C. M. & Cech, T. R. Biochemistry 28, 769–774 (1989).

    Article  CAS  Google Scholar 

  20. Gottschling, D. E. & Zakian, V. A. Cell 47, 195–205 (1986).

    Article  CAS  Google Scholar 

  21. Greider, C. W. & Blackburn, E. H. Cell 51, 887–898 (1987).

    Article  CAS  Google Scholar 

  22. Zahler, A. M. & Prescott, D. M. Nucleic Acids Res. 16, 6953–6972 (1988).

    Article  CAS  Google Scholar 

  23. Greider, C. W. & Blackburn, E. H. Cell 43, 405–413 (1985).

    Article  CAS  Google Scholar 

  24. Greider, C. W. & Blackburn, E. H. Nature 337, 331–337 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Morin, G. B. Cell (in the press).

  26. Edelmann, W., Kröger, B., Goller, M. & Horak, I. Cell 57, 937–946 (1989).

    Article  CAS  Google Scholar 

  27. Lyamichev, V. I. et al. Nature 339, 634–637 (1989).

    Article  ADS  CAS  Google Scholar 

  28. Kohwi-Shigematsu, T. & Kohwi, Y. Cell 43, 199–206 (1985).

    Article  CAS  Google Scholar 

  29. Mirkin, S. M. et al. Nature 330, 495–497 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Johnston, B. H. Science 241, 1800–1804 (1988).

    Article  ADS  CAS  Google Scholar 

  31. Htun, H. & Dahlberg, J. E. Science 243, 1571–1576 (1989).

    Article  ADS  CAS  Google Scholar 

  32. Pluta, A. F. & Zakian, V. A. Nature 337, 429–433 (1989).

    Article  ADS  CAS  Google Scholar 

  33. Cherry, J. M. & Blackburn, E. H. Cell 43, 747–758 (1985).

    Article  CAS  Google Scholar 

  34. Herrick, G. et al. Cell 43, 759–768 (1985).

    Article  CAS  Google Scholar 

  35. The Evaluation and Purification of Synthetic Oligonucleotides (Applied Biosystems User Manual 13, Foster City, 1987).

  36. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundquist, W., Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 (1989). https://doi.org/10.1038/342825a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342825a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing