Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anion channels activated by adrenaline in cardiac myocytes

Abstract

IN heart cells, the catecholamine-activated cyclic AMP system regulates calcium1 and potassium2–4 channels. We report here a novel class of chloride channels that can be activated by adrenaline in mammalian ventricular cells. Like the agonist-activated Cl− channel currents of airway5–9 and colonic10,11 epithelial cells, the cardiac CF-channel current shows outward rectification. But the unit conductance of cardiac Cl channels is smaller than that of epithelial Cl channels. The cardiac Cl− channel is functionally voltage-independent, in contrast to the Cl channel in colonic epithelial cells10,11. This channel could be responsible for the β-catecholamine-induced increase in cardiac membrane conductance12 that has been attributed to activation of a Cl current13–15. Thus, sympathetic control of cardiac electrical activity involves not only the voltage-dependent, excitation-related cation channels, but also anion channels that generate a steady current.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hescheler, J. & Trautwein, W. in Isolated Adult Cardiomyocytes (eds Piper, H. M. & Isenberg, G.) 129–154 (CRC, Boca Raton, 1989).

    Google Scholar 

  2. Tsien, R. W., Giles, W. & Greengard, P. Nature new Biol. 240, 181–183 (1972).

    Article  CAS  Google Scholar 

  3. Brown, H. F. & Noble, S. J. J. Physiol. Lond. 238, 51P–53P (1974).

    Article  CAS  Google Scholar 

  4. Yazawa, K. & Kameyama, M. J. Physiol. Lond. 421, 135–150 (1990).

    Article  CAS  Google Scholar 

  5. Welsh, M. J. & Liedtke, C. M. Nature 322, 467–470 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Frizzell, R. A., Rechkemmer, G. & Shoemaker, R. L. Science 233, 558–560 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Li, M., et al. Nature 331, 358–360 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Schoumacher, R. A., et al. Nature 330, 752–754 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Welsh, M. J. Science 232, 1648–1650 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Halm, D. R., Rechkemmer, G. R., Schoumacher, R. A. & Frizzell, R. A. Am. J. Physiol. 254, C505–C511 (1988).

    Article  CAS  Google Scholar 

  11. Hayslett, J. P., Gögelein, K. H., Kunzelmann, K. & Greger, R. Pflügers Arch. 410, 487–494 (1987).

    Article  CAS  Google Scholar 

  12. Egan, T. M., Noble, D., Noble, S. J., Powell, T. & Twist, V. W. Nature 328, 634–637 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Harvey, R. D. & Hume, J. R. Science 244, 983–985 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Bahinski, A., Nairn, A. C., Greengard, P. & Gadsby, D. C. Nature 340, 718–721 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Matsuoka, S., Ehara, T. & Noma, A. J. Physiol. Lond. 425, 579–598 (1990).

    Article  CAS  Google Scholar 

  16. Vaughan-Jones, R. D. J. Physiol. 295, 83–109 (1979).

    Article  CAS  Google Scholar 

  17. Spitzer, K. W. & Walker, J. L. Am. J. Physiol. 238, H487–H493 (1980).

    CAS  PubMed  Google Scholar 

  18. Fong, C. N. & Hinke A. M. Can. J. Physiol. Pharmac. 59, 479–484 (1980).

    Article  Google Scholar 

  19. Caille, J. P., Ruiz-Ceretti, E. & Schanne, O. F. Am. J. Physiol. 240, C183–C188 (1981).

    Article  CAS  Google Scholar 

  20. Baumgarten, C. M. & Fozzard, H. A. Am. J. Physiol. 241, C121–C129 (1981).

    Article  CAS  Google Scholar 

  21. Carmeliet, E. J. Physiol. Lond. 156, 375–388 (1961).

    Article  CAS  Google Scholar 

  22. Hutter, O. F. & Noble, D. J. Physiol. Lond. 157, 335–350 (1961).

    Article  CAS  Google Scholar 

  23. Hille, B. Ionic channels of Excitable Membranes (Sinauer Associates Inc., Sunderland, 1984).

    Google Scholar 

  24. Earm, Y. E., Noble, D., Noble, S. & Spindler, A. J. J. Physiol. Lond. 417, 56P (1989).

    Google Scholar 

  25. Coronado, R. & Latorre, R. Nature 298, 849–852 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Ehara, T., Matsuoka, S. & Noma, A. J. Physiol. Lond. 410, 227–249 (1989).

    Article  CAS  Google Scholar 

  27. Bahinski, A., Gadsby, D., Greengard, P. & Nairn, A. C. J. Physiol. Lond. 418, 32P (1989).

    Google Scholar 

  28. Powell, T., Terrar, D. A. & Twist, V. W. J. Physiol. Lond. 302, 131–153 (1980).

    Article  CAS  Google Scholar 

  29. Isenberg, G. & Klöckner, U. Pflügers Arch. 395, 6–18 (1982).

    Article  CAS  Google Scholar 

  30. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehara, T., Ishihara, K. Anion channels activated by adrenaline in cardiac myocytes. Nature 347, 284–286 (1990). https://doi.org/10.1038/347284a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347284a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing