Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18)

Abstract

FOLLICULAR lymphoma, the most common human lymphoma, characteristically has a t(14;18) interchromosomal translocation1,2. It is typically an indolent disease comprised of small resting B cells, but frequently develops into a high-grade lymphoma3. The t(14; 18) translocates the Bcl-2 gene, generating a deregulated Bcl-2–immunoglobulin fusion gene4–8. Bcl-2 is a novel inner mitochondrial membrane protein9 that extends the survival of certain cells by blocking programmed cell death9–11. To determine the oncogenic potential of the t(14; 18) translocation, we produced transgenic mice bearing a Bcl-2–immunoglobulin minigene that structurally mimicked the t(14; 18) (ref. 12). An indolent follicular hyperplasia in these transgenic mice progressed to a malignant diffuse large-cell lymphoma. The long latency, progression from polyclonal to monoclonal disease, and histological conversion, are all suggestive of secondary changes. Half of the immunoblastic high-grade lymphomas had a rearranged c-myc gene. Our transgenic mice provide an animal model for tumour progression in t(14; 18) lymphoma and show that prolonged B-cell life increases tumour incidence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Cristina López, Birgit Burkhardt, … Reiner Siebert

References

  1. Rowley, J. D. Science 216, 749–751 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Yunis, J. J. et al. Science 221, 227–236 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Horning, S. J. & Rosenberg, S. A. New Engl. J. Med. 311, 1471–1475 (1984).

    Article  CAS  Google Scholar 

  4. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C. M. Science 229, 1390–1393 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Bakhshi, A. et al. Cell 41, 889–906 (1985).

    Article  Google Scholar 

  6. Cleary, M. L. & Sklar, J. Proc. natn. Acad. Sci. U.S.A. 82, 7439–7443 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Cleary, M. L., Smith, S. D. & Sklar, J. Cell 47, 19–28 (1986).

    Article  CAS  Google Scholar 

  8. Seto, M. et al. EMBO J. 7, 123–131 (1988).

    Article  CAS  Google Scholar 

  9. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. & Korsmeyer, S. J. Nature 348, 334–336 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Vaux, D. L., Cory, S. & Adams, J. M. Nature 335, 440–442 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Nunez, G. et al. J. Immun. 144, 3602–3610 (1990).

    CAS  Google Scholar 

  12. McDonnell, T. J. et al. Cell 57, 79–88 (1989).

    Article  CAS  Google Scholar 

  13. McDonnell, T. J. et al. Molec. cell. Biol. 10, 1901–1907 (1990).

    Article  CAS  Google Scholar 

  14. Pattengale, P. K. & Taylor, C. R. Am. J. Path. 113, 237–265 (1983).

    CAS  PubMed  Google Scholar 

  15. Crissman, H. A. & Steinkamp, J. A. J. Cell. Biol. 59, 766–771 (1973).

    Article  CAS  Google Scholar 

  16. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  17. Nunez, G. et al. Proc. natn. Acad. Sci. U.S.A. 86, 4589–4593 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Reed, J. C. et al. Proc. natn. Acad. Sci. U.S.A. 87, 3660–3664 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Dalla-Favera, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7824–7827 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Taub, R. et al. Proc. natn. Acad. Sci. U.S.A. 79, 7837–7841 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Adams, J. M., Gerondakis, S., Webb, E., Corcoran, L. M. & Cory, S. Proc. natn. Acad. Sci. U.S.A. 80, 1982–1986 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Marcu, K. B. et al. Proc. natn. Acad. Sci. U.S.A. 80, 519–523 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Stanton, L. W. & Marcu, K. B. Nucleic Acids Res. 10, 5993–6006 (1982).

    Article  CAS  Google Scholar 

  24. Langdon, W. Y., Harris, A. W., Cory, S. & Adams, J. M. Cell 47, 11–18 (1986).

    Article  CAS  Google Scholar 

  25. Gauwerky, C. E., Haluska, F. G., Tsujimoto, Y., Nowell, P. C. & Croce, C. M. Proc. natn. Acad. Sci. U.S.A. 85, 8548–8552 (1988).

    Article  ADS  CAS  Google Scholar 

  26. deJong, D. et al. New Engl. J. Med 318, 1373–1378 (1988).

    Article  CAS  Google Scholar 

  27. Bishop, J. M. Science 235, 305–311 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Sager, R. Science 246, 1406–1412 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonnell, T., Korsmeyer, S. Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14;18). Nature 349, 254–256 (1991). https://doi.org/10.1038/349254a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349254a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing