Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The structure of malaria pigment β-haematin

Abstract

Despite the worldwide public health impact of malaria, neither the mechanism by which the Plasmodium parasite detoxifies and sequesters haem, nor the action of current antimalarial drugs is well understood. The haem groups released from the digestion of the haemoglobin of infected red blood cells are aggregated into an insoluble material called haemozoin or malaria pigment. Synthetic β-haematin (FeIII-protoporphyrin-IX)2 is chemically1,2, spectroscopically2,3 and crystallographically4 identical to haemozoin and is believed to consist of strands of FeIII-porphyrin units, linked into a polymer by propionate oxygen-iron bonds. Here we report the crystal structure of β-haematin determined using simulated annealing techniques to analyse powder diffraction data obtained with synchrotron radiation. The molecules are linked into dimers through reciprocal iron–carboxylate bonds to one of the propionic side chains of each porphyrin, and the dimers form chains linked by hydrogen bonds in the crystal. This result has implications for understanding the action of current antimalarial drugs and possibly for the design of new therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of the FeIII-protoporphyrin-IX molecule used in the structure solution (hydrogen atoms not shown).
Figure 2: Two unit cells of the crystal structure of β-haematin, viewed along the [001] direction.
Figure 3: Observed (crosses) and calculated (solid line) X-ray powder diffraction patterns of β-haematin, using X-rays of wavelength 1.16192 Å.
Figure 4: Packing diagram of the crystal structure of β-haematin.

Similar content being viewed by others

References

  1. Fitch, C. D. & Kanjananggulpan, P. The state of ferriprotoporphyrin IX in malaria pigment. J. Biol. Chem. 262, 15552–15555 (1987).

    CAS  PubMed  Google Scholar 

  2. Slater, A. F. G. et al. An iron–carboxylate bond links the heme units of malaria pigment. Proc. Natl Acad. Sci. USA 88, 325–329 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Bohle, D. S. et al. Structural and spectroscopic studies of β-hematin (the heme coordination polymer in malaria pigment. Am. Chem. Soc. Symp. Ser. 572, 497–515 ( 1994).

    CAS  Google Scholar 

  4. Bohle, D. S., Dinnebier, R. E., Madsen, S. K. & Stephens, P. W. Characterization of the products of the heme detoxification pathway in malarial late trophozoites by X-ray diffraction. J. Biol. Chem. 272, 713–716 (1997).

    Article  CAS  Google Scholar 

  5. Olliaro, P. L. & Goldberg, D. E. The plasmodium digestive vacuole- metabolic headquarters and choice drug target. Parasitol. Today 11, 294–297 ( 1995).

    Article  CAS  Google Scholar 

  6. Yayon, A., Cabantchik, I. & Ginsburg, H. Susceptibility of human malaria parasites to chloroquine is pH dependent. Proc. Natl Acad. Sci. USA 82, 2784–2788 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Homewood, C., Warhurst, D., Peters, W. & Baggaley, V. Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235, 50–52 (1972).

    Article  ADS  CAS  Google Scholar 

  8. Slater, A. F. G. & Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355, 167–169 ( 1992).

    Article  ADS  CAS  Google Scholar 

  9. Dorn, A., Stoffel, R., Matile, H., Bubendorf, A. & Ridley, R. G. Malarial haemozoin/β-haematin supports haem polymerization in the absence of protein. Nature 374 , 269–271 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Sullivan, D. J., Gluzman, I. Y., Russell, D. G. & Goldberg, D. E. On the molecular mechanism of chloroquine's antimalarial action. Proc. Natl Acad. Sci. USA 93, 11865– 11870 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Bohle, D. S., Debrunner, P., Jordan, P. A., Madsen, S. K. & Schulz, C. E. Aggregated heme detoxification byproducts in malarial trophozoites: β-hematin and malaria pigment have a single S = 5/2 iron environment in the bulk phase as determined by EPR and magnetic Mössbauer spectroscopy. J. Am. Chem. Soc. 120, 8255–8256 (1998).

    Article  CAS  Google Scholar 

  12. Adams, P. A., Berman, P. A. M., Egan, T. J., Marsh, P. J. & Silver, J. The iron environment in heme and heme-antimalarial complexes of pharmacological interest. J. Inorg. Biochem. 63, 69–77 ( 1996).

    Article  CAS  Google Scholar 

  13. Dorn, A. et al. An assessment of drug–haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem. Pharmacol. 55, 727–736 (1998).

    Article  CAS  Google Scholar 

  14. Bendrat, K., Berger, B. J. & Cerami, A. Haem polymerization in malaria. Nature 378, 138 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Ridley, R. G., Dorn, A., Matile, H. & Kansy, M. Haem polymerization in malaria. Nature 378, 138– 139 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Francis, S. E., Sullivan, D. J. & Goldberg, D. E. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev. Microbiol. 51 , 97–123 (1997).

    Article  CAS  Google Scholar 

  17. Bohle, D. S. & Helms, J. B. Synthesis of beta-hematin by dehydrohalogenation of hemin. Biochem. Biophys. Res. Commun. 193, 504–508 (1993).

    Article  CAS  Google Scholar 

  18. David, W. I. F., Shankland, K. & Shankland, N. Routine determination of molecular crystal structures from powder diffraction data. Chem. Commun. 931– 932 (1998).

  19. Andreev, Y. G. & Bruce, P. G. Solving crystal structures of molecular solids without single crystals: a simulated annealing approach. J. Chem. Soc. Dalton Trans. 4071–4080 (1998).

  20. Koenig, D. F. The structure of α-chlorohemin. Acta Crystallogr. 18, 663–673 (1965).

    Article  CAS  Google Scholar 

  21. LeBail, A., Duroy, H. & Fourquest, J. L. Ab initio structure determination of LiSbWO 6 by X-ray-powder diffraction. Mater. Res. Bull. 23, 447–452 (1988).

    Article  CAS  Google Scholar 

  22. Larson, A. C. & Von Dreele, R. B. GSAS General Structure Analysis System (Los Alamos Laboratory Report No. LA-UR-86-748, Los Alamos, 1987).

    Google Scholar 

  23. Bominaar, E. L. et al. Structural, Mossbauer, and EPR investigations on two oxidation states of a five-coordinate, high spin synthetic heme. Quantitative interpretation of zero-field parameters and large quadrupole splitting. Inorg. Chem. 31, 1845–1854 ( 1992).

    Article  CAS  Google Scholar 

  24. Scheidt, W. R. & Lee, Y. J. Recent advances in the stereochemistry of metallotetrapyrroles. Struct. Bond. 64, 1–70 (1987).

    Article  CAS  Google Scholar 

  25. Lemberg, R. & Legge, J. W. Haematin Compounds and Bile Pigments (Interscience, New York, 1949).

    Google Scholar 

  26. Sullivan, D. J., Matile, H., Ridley, R. G. & Goldberg, D. E. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem. 273, 31103– 31107 (1998).

    Article  CAS  Google Scholar 

  27. Slater, A. F. G. Chloroquine-mechanism of drug-action and resistance in Plasmodium falciparum . Pharm. Ther. 57, 203– 235 (1993).

    Article  CAS  Google Scholar 

  28. Egan, T. J., Hempelmann, E. & Mavuso, W. W. Characterisation of synthetic beta-haematin and effects of the antimalarial drugs quinidine, halofantrine, desbutylhalofantrine and mefloquine on its formation. J. Inorg. Biochem. 73, 101–107 (1999).

    Article  CAS  Google Scholar 

  29. Gluzman, I. Y. et al. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Invest. 93 , 1602–1608 (1994).

    Article  CAS  Google Scholar 

  30. Francis, S. E., Gluzman, I. Y., Oksman, A., Banerjee, D. & Goldberg, D. E. Characterization of native falcipain, an enzyme involved in Plasmodium falciparum hemoglobin degradation. Mol. Biochem. Parasitol. 83, 189– 200 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Synchrotron Light Source, Brookhaven National Laboratory, is supported by the US Department of Energy, Division of Chemical Sciences and Division of Materials Sciences. D.S.B. acknowledges financial support from Dreyfus Foundation and the United Nations Development Programs/World Bank/World Health Organisation Special Programme for Research and Training in Tropical Diseases. The SUNY X3 beamline at the National Synchrotron Light Source is supported by the Division of Basic Energy Sciences of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Stephens.

Supplementary information

41586_2000_BF35005132_MOESM1_ESM.doc

(a) atomic positions after the Rietveld refinement, (b) selected interatomic distances and (c) selected interatomic angles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagola, S., Stephens, P., Bohle, D. et al. The structure of malaria pigment β-haematin. Nature 404, 307–310 (2000). https://doi.org/10.1038/35005132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35005132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing