Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution

Abstract

Calcium ATPase is a member of the P-type ATPases that transport ions across the membrane against a concentration gradient. Here we have solved the crystal structure of the calcium ATPase of skeletal muscle sarcoplasmic reticulum (SERCA1a) at 2.6 Å resolution with two calcium ions bound in the transmembrane domain, which comprises ten α-helices. The two calcium ions are located side by side and are surrounded by four transmembrane helices, two of which are unwound for efficient coordination geometry. The cytoplasmic region consists of three well separated domains, with the phosphorylation site in the central catalytic domain and the adenosine-binding site on another domain. The phosphorylation domain has the same fold as haloacid dehalogenase. Comparison with a low-resolution electron density map of the enzyme in the absence of calcium and with biochemical data suggests that large domain movements take place during active transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal packing of Ca2+-ATPase in the plate-like crystals.
Figure 2: Architecture of the sarcoplasmic reticulum Ca2+-ATPase. α-Helices are represented by cylinders and β-strands by arrows, as recognized by DSSP46.
Figure 3: The arrangement of transmembrane helices (a), an enlarged view of a part of M5 helix (b) and water accessible cavities on the cytoplasmic surface (in stereo, c).
Figure 4: Details of the transmembrane Ca2+-binding sites.
Figure 5: Architecture of the phosphorylation domain (P in Fig. 2) of Ca2+-ATPase (a) and the catalytic core domain of L-2-haloacid dehalogenase (HAD23, b).
Figure 6: Binding of TNP-AMP to Ca2+-ATPase.
Figure 7: Fitting the atomic model obtained for the Ca2+-bound state (arrows and cylinders) to an 8 Å resolution map (blue net) obtained from tubular crystals formed in the absence of Ca2+ and presence of decavanadate and dansyl-thapsigargin13.
Figure 8: Coupling of the phosphorylation domain and the transmembrane domain by the loop (L67) connecting helices M6 and M7.

Similar content being viewed by others

References

  1. Ebashi, S. & Lipman, F. Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell. Biol. 14, 389–400 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Møller, J. V., Juul, B. & le Maire, M. Structural organization, ion transport, and energy transduction of P- type ATPases. Biochim. Biophys. Acta 1286, 1–51 (1996).

    Article  PubMed  Google Scholar 

  3. MacLennan, D. H., Rice, W. J. & Green, N. M. The mechanism of Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases. J. Biol. Chem. 272, 28815–28818 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  4. McIntosh, D. B. The ATP binding sites of P-type ion transport ATPases. Adv. Mol. Cell. Biol. 23A, 33–99 ( 1998).

    CAS  Google Scholar 

  5. MacLennan, D. H., Brandl, C. J., Korczak, B. & Green, N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316, 696– 700 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Clarke, D. M., Loo, T. W., Inesi, G. & MacLennan, D. H. Location of high affinity Ca2+-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca2+- ATPase. Nature 339, 476–478 ( 1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop—a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 15, 430– 434 (1990).

    Article  PubMed  Google Scholar 

  8. Aravind, L., Galperin, M. Y. & Koonin, E. V. The catalytic domain of the P-type ATPase has the haloacid dehalogenase fold. Trends Biochem. Sci. 23, 127–129 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Dux, L. & Martonosi, A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J. Biol. Chem. 258, 2599–2603 (1983).

    CAS  PubMed  Google Scholar 

  10. Dux, L., Pikula, S., Mullner, N. & Martonosi, A. Crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J. Biol. Chem. 262, 6439– 6442 (1987).

    CAS  PubMed  Google Scholar 

  11. Stokes, D. L. & Green, N. M. Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys. J. 57, 1–14 ( 1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toyoshima, C., Sasabe, H. & Stokes, D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature 362, 467–471 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M. & Stokes, D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392, 835–839 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Ogawa, H., Stokes, D. L., Sasabe, H. & Toyoshima, C. Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-Å resolution. Biophys. J. 75, 41–52 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brandl, C. J., deLeon, S., Martin, D. R. & MacLennan, D. H. Adult forms of the Ca2+ATPase of sarcoplasmic reticulum. Expression in developing skeletal muscle. J. Biol. Chem. 262, 3768–3774 (1987).

    CAS  PubMed  Google Scholar 

  16. Toyofuku, T., Kurzydlowski, K., Tada, M. & MacLennan, D. H. Amino acids Lys-Asp-Asp-Lys-Pro-Val402 in the Ca2+-ATPase of cardiac sarcoplasmic reticulum are critical for functional association with phospholamban. J. Biol. Chem. 269, 22929–22932 (1994).

    CAS  PubMed  Google Scholar 

  17. Yu, M. et al. Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin-resistant hamster cells. J. Biol. Chem. 273, 3542–3546 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Nayal, M. & Di Cera, E. Predicting Ca2+-binding sites in proteins. Proc. Natl Acad. Sci. USA 91, 817–821 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Inesi, G., Kurzmack, M., Coan, C. & Lewis, D. E. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J. Biol. Chem. 255, 3025–3031 (1980).

    CAS  PubMed  Google Scholar 

  20. Soulié, S. et al. NMR conformational study of the sixth transmembrane segment of sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 38, 5813–5821 ( 1999).

    Article  PubMed  Google Scholar 

  21. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Clarke, D. M. et al. Functional consequences of glutamate, aspartate, glutamine, and asparagine mutations in the stalk sector of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 11246–11251 (1989).

    CAS  PubMed  Google Scholar 

  23. Hisano, T. et al. Crystal structure of L-2-haloacid dehalogenase from Pseudomonas sp. YL. An α/β hydrolase structure that is different from the α/β hydrolase fold. J. Biol. Chem. 271, 20322–20330 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. McIntosh, D. B., Woolley, D. G., Vilsen, B. & Andersen, J. P. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. J. Biol. Chem. 271, 25778–25789 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Pick, U. Interaction of fluorescein isothiocyanate with nucleotide-binding sites of the Ca-ATPase from sarcoplasmic reticulum. Eur. J. Biochem. 121, 187–195 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. McIntosh, D. B., Woolley, D. G. & Berman, M. C. 2′,3′-O-(2,4,6-trinitrophenyl)-8-azido-AMP and-ATP photolabel Lys-492 at the active site of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 267, 5301 –5309 (1992).

    CAS  PubMed  Google Scholar 

  27. Yamamoto, H., Imamura, Y., Tagaya, M., Fukui, T. & Kawakita, M. Ca2+-dependent conformational change of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal. J. Biochem. (Tokyo) 106, 1121–1125 (1989).

    Article  CAS  Google Scholar 

  28. Juul, B. et al. Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca2+- ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K? J. Biol. Chem. 270, 20123–20134 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Andersen, J. P., Vilsen, B., Collins, J. H. & Jørgensen, P. L. Localization of E1–E2 conformational transitions of sarcoplasmic reticulum Ca-ATPase by tryptic cleavage and hydrophobic labeling. J. Membr. Biol. 93, 85–92 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y. F. et al. Crystal structures of reaction intermediates of L-2-haloacid dehalogenase and implications for the reaction mechanism. J. Biol. Chem. 273, 15035–15044 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  31. Goldshleger, R. & Karlish, S. J. D. Fe-catalyzed cleavage of the alpha subunit of Na/K-ATPase: evidence for conformation-sensitive interactions between cytoplasmic domains. Proc. Natl Acad. Sci. USA 94, 9596-9601 (1997).

    Article  ADS  PubMed Central  Google Scholar 

  32. Rice, W. J., Green, N. M. & MacLennan, D. H. Site-directed disulfide mapping of helices M4 and M6 in the Ca2+ binding domain of SERCA1a, the Ca2+ ATPase of fast twitch skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 272, 31412–31419 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Falson, P. et al. The cytoplasmic loop between putative transmembrane segments 6 and 7 in sarcoplasmic reticulum Ca2+-ATPase binds Ca2+ and is functionally important. J. Biol. Chem. 272, 17258–17262 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. McIntosh, D. B. Glutaraldehyde cross-links Lys-492 and Arg-678 at the active site of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 267, 22328–22335 (1992).

    CAS  PubMed  Google Scholar 

  35. Nakamoto, R. K. & Inesi, G. Studies of the interactions of 2′,3′-O-(2,4,6- trinitrocyclohexyldienylidine)adenosine nucleotides with the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase active site. J. Biol. Chem. 259, 2961–2970 (1984).

    CAS  PubMed  Google Scholar 

  36. Huang, S. & Squier, T. C. Enhanced rotational dynamics of the phosphorylation domain of the Ca- ATPase upon calcium activation. Biochemistry 37, 18064–18073 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Champeil, P. et al. Characterization of a protease-resistant domain of the cytosolic portion of sarcoplasmic reticulum Ca2+-ATPase. J. Biol. Chem. 273, 6619–6631 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Sagara, Y. & Inesi, G. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J. Biol. Chem. 266, 13503– 13506 (1991).

    CAS  PubMed  Google Scholar 

  39. Misra, M., Taylor, D., Oliver, T. & Taylor, K. Effect of organic anions on the crystallization of the Ca2+-ATPase of muscle sarcoplasmic reticulum. Biochim. Biophys. Acta 1077, 107–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Kamiya, N.et al. Design of the high energy undulator pilot beamline for macromolecular crystallography at the SPring-8. Rev. Sci. Instrum. 66, 1703–1705 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Adachi, S., Oguchi, T. & Ueki, T. Present status of RIKEN beamline II (BL44B2) for structural biology. SPring-8 Annual Report 1, 239– 240 (1996).

    Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  43. Leslie, A. G. W. MOSFLM- recent changes and future developments. CCP4 Newsletter on Protein Crystallography 35, 18– 19 (1998).

    Google Scholar 

  44. Collaborative Computational project, No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 ( 1994).

  45. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  46. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946 –950 (1991).

    Article  Google Scholar 

  48. Clarke, D. M., Loo, T. W. & MacLennan, D. H. Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 265, 22223–22227 (1990).

    CAS  PubMed  Google Scholar 

  49. Ovchinnikov, Y. et al. Affinity modification of E1-form of Na+, K+-ATPase revealed Asp-710 in the catalytic site. FEBS Lett. 217, 111–116 ( 1987).

    Article  CAS  PubMed  Google Scholar 

  50. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Adachi, N. Kamiya (Riken) and M. Kawamoto (JASRI) for their help in data taking at SPring-8, and K. Tani for computations. We acknowledge that very first crystals for X-ray were made by H. Mukai. This work was supported in part by grants-in-aid from the Ministry of Culture, Education, Science and Sports of Japan and from CRESTO (to C.T. and M.N.) and also by Toray Science Foundation (C.T.). This paper is dedicated to S. Ebashi, a founder of Ca2+-ATPase field and the father of the calcium theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chikashi Toyoshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toyoshima, C., Nakasako, M., Nomura, H. et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000). https://doi.org/10.1038/35015017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015017

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing