Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CD95's deadly mission in the immune system

Abstract

Apoptosis in the immune system is a fundamental process regulating lymphocyte maturation, receptor repertoire selection and homeostasis. Thus, death by apoptosis is as essential for the function of lymphocytes as growth and differentiation. This article focuses on death receptor-associated apoptosis and the role of CD95 (Apo-1/Fas)-mediated signalling in T-cell and B-cell development and during the course of an immune response. Gaining an insight into these processes improves our understanding of the pathogenesis of diseases such as cancer, autoimmunity and AIDS, and opens new approaches to rational treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T- and B-lymphocyte development (see text).
Figure 2: Cytotoxic T lymphocytes (CTLs) can kill target cells by the CD95 (yellow)/CD95L (red) system (left) or by the perforin/granzyme B (GrB) system (right).
Figure 3: Signalling pathways induced by CD95.
Figure 4

Similar content being viewed by others

References

  1. Tonegawa, S. Somatic generation of antibody diversity. Nature 302 , 575–581 (1983).

    ADS  CAS  PubMed  Google Scholar 

  2. Craxton, A., Otipoby, K. L., Jiang, A. & Clark, E. A. Signal transduction pathways that regulate the fate of B lymphocytes. Adv. Immunol. 73, 79–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  4. Drakesmith, H., Chain, B. & Beverley, P. How can dendritic cells cause autoimmune disease? Immunol. Today 21, 214–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. DosReis, G. A. & Shevach, E. M. Peripheral T-cell self-reactivity and immunological memory. Immunol. Today 19, 587–588 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Berzins, S. P., Godfrey, D. I., Miller, J. F. & Boyd, R. L. A central role for thymic emigrants in peripheral T cell homeostasis. Proc. Natl Acad. Sci. USA 96, 9787– 9791 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krammer, P. H. CD95(APO-1/Fas)-mediated apoptosis: live and let die. Adv. Immunol. 71, 163–210 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  8. Peter, M. E., Scaffidi, C., Medema, J. P., Kischkel, F. C. & Krammer, P. H. In Apoptosis, Problems and Diseases (ed. Kumar, S.) 25–63 (Springer, Heidelberg, 1998).

    Google Scholar 

  9. Marsters, S. A. et al. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr. Biol. 10, 785–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cascino, I., Fiucci, G., Papoff, G. & Ruberti, G. Three functional soluble forms of the human apoptosis-inducing Fas molecule are produced by alternative splicing. J. Immunol. 154, 2706 –2713 (1995).

    CAS  PubMed  Google Scholar 

  11. Klas, C., Debatin, K. M., Jonker, R. R. & Krammer, P. H. Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol. 5, 625–630 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Leithäuser, F. et al. Constitutive and induced expression of Apo-1, a new member of the nerve growth factor/tumor necrosis factor receptor superfamily, in normal and neoplastic cells. Lab. Invest. 69, 415 (1993).

    PubMed  Google Scholar 

  13. Golstein, P. Controlling cell death. Science 275, 1081 –1082 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Medema, J. P. et al. Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur. J. Immunol. 27 , 3492–3498 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Martinez-Lorenzo, M. J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999).

    CAS  PubMed  Google Scholar 

  16. Li, J. H. et al. The regulation of CD95 ligand expression and function in CTL . J. Immunol. 161, 3943– 3949 (1998).

    CAS  PubMed  Google Scholar 

  17. Mariani, S. M., Matiba, B., Bäumler, C. & Krammer, P. H. Regulation of cell surface APO-1/Fas (CD95) ligand expression by metalloproteases . Eur. J. Immunol. 25, 2303– 2307 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka, M. et al. Fas ligand in human serum. Nature Med. 2, 317–322 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Yagita, H. et al. Fas-mediated cytotoxicity — a new immunoregulatory and pathogenic function of Th1 CD4+ T cells. Immunol. Rev. 146, 223–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Tanaka, M., Suda, T., Takahashi, T. & Nagata, S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 14, 1129–1135 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suda, T., Hashimoto, H., Tanaka, M., Ochi, T. & Nagata, S. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J. Exp. Med. 186, 2045–2050 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kischkel, F. C. et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muzio, M. et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  24. Siegel, R. M. et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288, 2354–2357 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Chan, F. K. et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481– 490 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Li, H., Zhu, H., Xu, C. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis . Cell 94, 491–501 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Kroemer, G. The pharmacology of T cell apoptosis. Adv. Immunol. 58, 211–296 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Yin, X. M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886– 891 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Thome, M. et al. Viral Flice-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature 386, 517– 521 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Hu, S. et al. A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis . J. Biol. Chem. 272, 9621– 9624 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Bertin, J. et al. Death effector domain-containing herpesvirus and poxvirus proteins inhibit both Fas- and TNFR1-induced apoptosis. Proc. Natl Acad. Sci. USA 94, 1172–1176 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Bodmer, J. L. et al. TRAIL receptor-2 signals apoptosis through FADD and caspase-8 . Nature Cell Biol. 2, 241– 243 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Sprick, M. R. et al. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599–609 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kischkel, F. C. et al. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, W. F., Scollay, R., Clark-Lewis, I. & Shortman, K. The size of functional T-lymphocyte pools within thymic medullary and cortical cell subsets. Thymus 5, 179– 195 (1983).

    CAS  PubMed  Google Scholar 

  41. Surh, C. D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Amsen, D. & Kruisbeek, A. M. Thymocyte selection: not by TCR alone. Immunol. Rev. 165, 209– 229 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kishimoto, H. & Sprent, J. The thymus and central tolerance . Clin. Immunol. 95, S3– S7 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Newton, K., Harris, A. W. & Strasser, A. FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J. 19, 931–941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krammer, P. H. & Debatin, K. M. When apoptosis fails. Curr. Biol. 2, 383– 385 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Kishimoto, H., Surh, C. D. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187, 1427– 1438 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Aiello, S. et al. Thymic dendritic cells express inducible nitric oxide synthase and generate nitric oxide in response to self- and alloantigens. J. Immunol. 164, 4649–4658 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Nelson, B. H. & Willerford, D. M. Biology of the interleukin-2 receptor. Adv. Immunol. 70, 1– 81 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Dhein, J., Walczak, H., Bäumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438– 441 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Alderson, M. R. et al. Fas ligand mediates activation-induced cell death in human T lymphocytes. J. Exp. Med. 181, 71– 77 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Brunner, T. et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 373, 441–444 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ju, S. T. et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444 –448 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Van Parijs, L., Ibraghimov, A. & Abbas, A. K. The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4, 321 –328 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Singer, G. G. & Abbas, A. K. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1, 365–371 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Inaba, M. et al. Primed T cells are more resistant to Fas-mediated activation-induced cell death than naive T cells. J. Immunol. 163, 1315–1320 (1999).

    CAS  PubMed  Google Scholar 

  56. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  57. Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor . Nature 377, 348–351 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Zimmerman, C., Brduscha-Riem, K., Blaser, C., Zinkernagel, R. M. & Pircher, H. Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts. J. Exp. Med. 183, 1367– 1375 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735– 744 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Spaner, D., Raju, K., Rabinovich, B. & Miller, R. G. A role for perforin in activation-induced T cell death in vivo: increased expansion of allogeneic perforin-deficient T cells in SCID mice. J. Immunol. 162, 1192–1199 ( 1999).

    CAS  PubMed  Google Scholar 

  61. Berndt, C., Möpps, B., Angermüller, S., Gierschik, P. & Krammer, P. H. CXCR4 and CD4 mediate a rapid CD95-independent cell death in CD4+ T cells. Proc. Natl Acad. Sci. USA 95, 12556–12561 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kirchhoff, S., Müller, W. W., Li-Weber, M. & Krammer, P. H. Upregulation of c-FLIP and reduction of AICD in CD28 costimulated human T cells. Eur. J. Immunol. (in the press).

  63. Kirchhoff, S., Müller, W. W., Krueger, A., Schmitz, I. & Krammer, P. H. TCR-mediated upregulation of c-FLIPs correlates with resistance towards CD95 mediated apoptosis by blocking DISC activity. J. Immunol. (in the press).

  64. Van Parijs, L., Refaeli, Y., Abbas, A. K. & Baltimore, D. Autoimmunity as a consequence of retrovirus-mediated expression of C-FLIP in lymphocytes. Immunity 11, 763– 770 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Boise, L. H., Noel, P. J. & Thompson, C. B. CD28 and apoptosis. Curr. Opin. Immunol. 7, 620–625 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  66. Lam, K. P. & Rajewsky, K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc. Natl Acad. Sci. USA 95, 13171–13175 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lam, K. P., Kuhn, R. & Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90, 1073–1083 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  68. Bouchon, A., Krammer, P. H. & Walczak, H. Critical role for mitochondria in B cell receptor-mediated apoptosis. Eur. J. Immunol. 30, 69– 77 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Berard, M. et al. Mitochondria connects the antigen receptor to effector caspases during B cell receptor-induced apoptosis in normal human B cells. J. Immunol. 163, 4655–4662 (1999).

    CAS  PubMed  Google Scholar 

  70. Lagresle, C., Mondiere, P., Bella, C., Krammer, P. H. & Defrance, T. Concurrent engagement of CD40 and the antigen receptor protects naive and memory human B cells from APO-1/Fas-mediated apoptosis . J. Exp. Med. 183, 1377– 1388 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, K. G. et al. bcl-2 transgene expression inhibits apoptosis in the germinal center and reveals differences in the selection of memory B cells and bone marrow antibody-forming cells. J. Exp. Med. 191, 475–484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Knodel, M., Kuss, A. W., Lindemann, D., Berberich, I. & Schimpl, A. Reversal of Blimp-1-mediated apoptosis by A1, a member of the Bcl-2 family. Eur. J. Immunol. 29, 2988–2998 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Merville, P. et al. Bcl-2+ tonsillar plasma cells are rescued from apoptosis by bone marrow fibroblasts. J. Exp. Med. 183, 227–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Foote, L. C., Marshak-Rothstein, A. & Rothstein, T. L. Tolerant B lymphocytes acquire resistance to Fas-mediated apoptosis after treatment with interleukin 4 but not after treatment with specific antigen unless a surface immunoglobulin threshold is exceeded. J. Exp. Med. 187, 847– 853 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xia, X. Z. et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J. Exp. Med. 192, 137–144 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gross, J. A. et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 404, 995–999 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Shu, H. B. & Johnson, H. B cell maturation protein is a receptor for the tumor necrosis factor family member TALL-1. Proc. Natl Acad. Sci. USA 97, 9156–9161 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinman, R. M., Turley, S., Mellman, I. & Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 191, 411–416 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Fanger, N. A., Maliszewski, C. R., Schooley, K. & Griffith, T. S. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J. Exp. Med. 190 , 1155–1164 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ashany, D., Savir, A., Bhardwaj, N. & Elkon, K. B. Dendritic cells are resistant to apoptosis through the Fas (CD95/APO-1) pathway. J. Immunol. 163, 5303–5311 (1999).

    CAS  PubMed  Google Scholar 

  82. Bjorck, P., Banchereau, J. & Flores-Romo, L. CD40 ligation counteracts Fas-induced apoptosis of human dendritic cells. Int. Immunol. 9, 365– 372 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Nagata, S. Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: a lesson from the mouse model. J. Hum. Genet. 43, 2–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  PubMed  Google Scholar 

  85. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Zhou, T. et al. Bisindolylmaleimide VIII facilitates Fas-mediated apoptosis and inhibits T cell-mediated autoimmune diseases. Nature Med. 5, 42–48 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Chao, D. T. & Korsmeyer, S. J. Bcl-2 family: regulators of cell death. Annu. Rev. Immunol. 16, 395– 419 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Adams, J. M., Harris, A. W., Strasser, A., Ogilvy, S. & Cory, S. Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene 18, 5268–5277 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Debatin, K. M. Activation of apoptosis pathways by anticancer drugs. Adv. Exp. Med. Biol. 457, 237–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Igney, F. H., Behrens, C. K. & Krammer, P. H. Tumor counterattack — concept and reality. Eur. J. Immunol. 30, 725–731 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Westendorp, M. O. et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375, 497– 500 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Krammer, P. H. et al. The role of APO-1-mediated apoptosis in the immune system . Immunol. Rev. 142, 175– 191 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Debatin, K. M. et al. High expression of APO-1 (CD95) on T lymphocytes from human immunodeficiency virus-1-infected children. Blood 83 , 3101–3103 (1994).

    CAS  PubMed  Google Scholar 

  95. Baumler, C. B. et al. Activation of the CD95 (APO-1/Fas) system in T cells from human immunodeficiency virus type-1-infected children. Blood 88, 1741–1746 (1996).

    CAS  PubMed  Google Scholar 

  96. Li, C. J., Friedman, D. J., Wang, C., Metelev, V. & Pardee, A. B. Induction of apoptosis in uninfected lymphocytes by HIV-1 Tat protein. Science 268, 429–431 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  97. Finkel, T. H. et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nature Med. 1, 129–134 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  98. Gougeon, M. L. & Montagnier, L. Programmed cell death as a mechanism of CD4 and CD8 T cell deletion in AIDS. Molecular control and effect of highly active anti-retroviral therapy. Ann. N.Y. Acad. Sci. 887, 199–212 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank my previous and present collaborators for help with the manuscript and the figures, particularly S. Baumann, K.-M. Debatin, T. Defrance, C. S. Falk, S. Kirchhoff, A. Krueger, B. Kyewski, M. Peter, I. Schmitz, A. Strecker and H. Walczak. I also thank H. Sauter and B. Pétillon for secretarial assistance. This work was funded by Deutsche Krebshilfe Dr Mildred Scheel Stiftung, German Israeli Cooperation in Cancer Research, AIDS grant German Federal Health Agency, Tumor Centre Heidelberg/Mannheim, BMBF Förderschwerpunkte 'Clinical-biomedical research' and 'Apoptosis', AIDS Verbund Heidelberg, Wilhelm-Sander Stiftung, Ernst-Jung-Stiftung, Förderschwerpunkt Transplantation, and the DFG. I apologize to all my colleagues who have done excellent work in the field and whose papers have not been quoted comprehensively — it was not possible to be encyclopedic in this exponentially growing field. I dedicate this article to the Basel Institute for Immunology, the closure of which was recently announced.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krammer, P. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000). https://doi.org/10.1038/35037728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037728

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing