Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The mitochondrion in apoptosis: how Pandora's box opens

Abstract

There is widespread agreement that mitochondria have a function in apoptosis, but the mechanisms behind their involvement remain controversial. Here we suggest that opening of a multiprotein complex called the mitochondrial permeability transition pore complex is sufficient (and, usually, necessary) for triggering apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical molecular architecture of the permeability transition pore complex and its regulation.
Figure 2: Alternative hypotheses for the modus operandi of Bcl-2/Bax-like proteins.

Similar content being viewed by others

References

  1. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  2. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death . Nature Med. 6, 513–519 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Budijardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).

    Article  Google Scholar 

  4. Vander Heiden, M. G. & Thompson, C. B. Bcl-2 proteins: Inhibitors of apoptosis or regulators of mitochondrial homeostasis? Nature Cell Biol. 1, E209–E216 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Gross, A., McDonnell, J. M. & Korsmeyer, S. J. Bcl-2 family members and the mitochondria in apoptosis . Genes Dev. 13, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Crompton, M. The mitochondrial permeability transition pore and its role in cell death . Biochem. J. 341, 233– 249 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woodfield, K., Ruck, A., Brdiczka, D. & Halestrap, A. P. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition . Biochem. J. 336, 287– 290 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Feldmann, G. et al. Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice. Hepatology 31, 674– 683 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Yin, X.-M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886– 891 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Eskes, R. et al. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217– 224 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Ahsen, O. et al. Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J. Cell Biol. 150, 1027–1036 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929– 935 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619 –642 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan, P. G., Thompson, M. B. & Scheff, S. W. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp. Neurol. 160, 226–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Budd, S. L., Tenneti, L., Lishnak, T. & Lipton, S. A. Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons . Proc. Natl Acad. Sci. USA 97, 6161– 6166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tafain, M., Schneider, T. G., Pastorino, J. G. & Farber, J. L. Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am. J. Pathol. 156, 2111–2121 (2000).

    Article  Google Scholar 

  18. Jacotot, E. et al. The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 191, 33–45 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldmacher, V. S. et al. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc. Natl Acad. Sci. USA 96, 12536–12541 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rahmani, Z., Huh, K. W., Lasher, R. & Siddiqui, A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 74, 2840–2846 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Massari, P., Ho, Y. & Wetzler, L. M. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc. Natl Acad. Sci. USA 97, 9070–9075 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027– 2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance . Science 289, 782–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Motoyama, S. et al. Bcl-2 is located predominantly in the inner membrane and crista of mitochondria in rat liver. Biochem. Biophys. Res. Commun. 249, 628–636 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Gotow, T. et al. Selective localization of Bcl-2 to the inner mitochondrial and smooth endoplasmic reticulum membranes in mammalian cells. Cell. Death Differ. 7, 666–674 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Costantini, P. et al. Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19, 307– 314 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Brenner, C. et al. Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Shimizu, S., Ide, T., Yanagida, T. & Tsujimoti, Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275, 12321–12325 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  30. Shimizu, S., Konishi, A., Kodama, T. & Tsujimoto, Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA 97, 3100–3105 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jürgensmeier, J. M. et al. Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl Acad. Sci. USA 95, 4997–5002 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria . Proc. Natl Acad. Sci. USA 95, 14681– 14686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pastorino, J. G. et al. Functional consequences of sustained or transient activation by Bax of the mitochondrial permeability transition pore. J. Biol. Chem. 274, 31734–31739 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  34. Vande Velde, C. et al. BIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20, 5454–5468 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Harris, M. H., Vander Heiden, M. G., Kron, S. J. & Thompson, C. B. Role of oxidative phosphorylation in Bax toxicity. Mol. Cell. Biol. 20, 3590–3596 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matsuyama, S., Xu, Q., Velours, J. & Reed, J. C. Mitochondrial F0F1-ATPase proton pump is required for function of proapoptotic protein Bax in yeast and mammalian cells. Mol. Cell 1, 327–336 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  37. Basañez, G. et al. Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc. Natl Acad. Sci. USA 96, 5492– 5497 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kudla, G. et al. The destabilization of lipid membrane induced by the C-terminal fragment of caspase 8-cleaved Bid is inhibited by the N-terminal fragment . J. Biol. Chem. 275, 22713– 22718 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Schendel, S. L. et al. Ion channel activity of the BH3 only bcl-2 family member, BID. J. Biol. Chem. 274, 21932– 21936 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. Bax-dependent transport of cytochrome c reconstituted in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu, S. & Tsujimoto, Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl Acad. Sci. USA 97, 577–582 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by a special grant from the Ligue Nationale contre le Cancer, as well as grants from ANRS, FRM and EC (to G.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Related links

Related links

DATABASE LINKS

Smac

Bcl-2

Bcl-xL

Bcl-W

Mcl1

A1

Bax

Bad

Bid

Bim

creatine kinase

hexokinase II

cyclophilin D

CD95

ANT2

mouse Ant1

BNIP3

ENCYCLOPEDIA OF LIFE SCIENCES

Apoptosis: molecular mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamzami, N., Kroemer, G. The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2, 67–71 (2001). https://doi.org/10.1038/35048073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing