Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Export by red blood cells of nitric oxide bioactivity

Abstract

Previous studies support a model in which the physiological O2 gradient is transduced by haemoglobin into the coordinate release from red blood cells of O2 and nitric oxide (NO)-derived vasoactivity to optimize oxygen delivery in the arterial periphery1,2. But whereas both O2 and NO diffuse into red blood cells, only O2 can diffuse out3,4,5. Thus, for the dilation of blood vessels by red blood cells, there must be a mechanism to export NO-related vasoactivity, and current models of NO-mediated intercellular communication should be revised. Here we show that in human erythrocytes haemoglobin-derived S-nitrosothiol (SNO), generated from imported NO, is associated predominantly with the red blood cell membrane, and principally with cysteine residues in the haemoglobin-binding cytoplasmic domain of the anion exchanger AE1. Interaction with AE1 promotes the deoxygenated structure in SNO–haemoglobin, which subserves NO group transfer to the membrane. Furthermore, we show that vasodilatory activity is released from this membrane precinct by deoxygenation. Thus, the oxygen-regulated cellular mechanism that couples the synthesis and export of haemoglobin-derived NO bioactivity operates, at least in part, through formation of AE1–SNO at the membrane–cytosol interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haemoglobin-derived SNO is associated with cysteine thiols of RBC membrane proteins.
Figure 2: AE1 is S-nitrosylated by SNO–Hb in intact RBCs and IOVs.
Figure 3: Regulation of aortic tone by RBC consumption and release of NO-related bioactivity.
Figure 4: The pathway for export from the RBC of NO-related bioactivity through transfer of NO groups from β-chain Cys 93 of Hb at the membrane–cytosol interface.

Similar content being viewed by others

References

  1. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Stamler, J. S. et al. Blood flow regulation by S-nitrosohemoglobin is controlled by the physiological oxygen gradient. Science 276, 2034–2037 (1997).

    Article  CAS  Google Scholar 

  3. Gow, A. J. & Stamler, J. S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Gow, A. J., Luchsinger, B. P., Pawloski, J. R., Singel, D. J. & Stamler, J. S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl Acad. Sci. USA 96, 9027–9032 (1999).

    Article  ADS  CAS  Google Scholar 

  5. McMahon, T. J., Stone, A. E., Bonaventura, J., Singel, D. J. & Stamler, J. S. Functional coupling of oxygen-binding and vasoactivity in S-nitrosohemoglobin. J. Biol. Chem. 275, 16738–16745 (2000).

    Article  CAS  Google Scholar 

  6. McMahon, T. J. & Stamler, J. S. Concerted nitric oxide/oxygen delivery by hemoglobin. Methods Enzymol. 301, 99–114 (1999).

    Article  CAS  Google Scholar 

  7. Pawloski, J. R., Swaminathan, R. V. & Stamler, J. S. Cell-free and erythrocytic S-nitrosohemoglobin inhibits human platelet aggregation. Circulation 97, 263–267 (1998).

    Article  CAS  Google Scholar 

  8. Rauenbuehler, P. B., Cordes, K. A. & Salhany, J. M. Identification of the hemoglobin binding sites on the inner surface of the erythrocyte membrane. Biochim. Biophys. Acta 692, 361–370 (1982).

    Article  CAS  Google Scholar 

  9. Walder, J. A. et al. The interaction of hemoglobin with the cytoplasmic domain of band 3 of the human erythrocyte membrane. J. Biol. Chem. 259, 10238–10246 (1984).

    CAS  PubMed  Google Scholar 

  10. Low, P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane–peripheral protein interactions. Biochim. Biophys. Acta 864, 145–167 (1986).

    Article  CAS  Google Scholar 

  11. Kondo, T. Preparation of microcapsules from human erythrocytes: use in transport experiments of glutathione and its S-conjugate. Methods Enzymol. 171, 217–225 (1989).

    Article  CAS  Google Scholar 

  12. Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18, 691–696 (1997).

    Article  CAS  Google Scholar 

  13. Sayare, M. & Fikiet, M. Cross-linking of hemoglobin to the cytoplasmic surface of human erythrocyte membranes. Identification of band 3 as a site for hemoglobin binding in Cu2+-o-phenanthroline catalyzed cross-linking. J. Biol. Chem. 256, 13152–13158 (1981).

    CAS  PubMed  Google Scholar 

  14. Liu, S. Q. & Knauf, P. A. Lys-430, site of irreversible inhibition of band 3 Cl- flux by eosin-5-maleimide, is not at the transport site. Am. J. Physiol. 264, C1155–C1164 (1993).

    Article  CAS  Google Scholar 

  15. Falke, J. J. & Chan, S. I. Molecular mechanisms of band 3 inhibitors. 1. Transport site inhibitors. Biochemistry 25, 7888–7894 (1986).

    Article  CAS  Google Scholar 

  16. Okubo, K., Kang, D., Hamasaki, N. & Jennings, M. L. Red blood cell band 3. Lysine 539 and lysine 851 react with the same H2DIDS (4,4′-diisothiocyanodihydrostilbene-2,2′-disulfonic acid) molecule. J. Biol. Chem. 269, 1918–1926 (1994).

    CAS  PubMed  Google Scholar 

  17. Salhany, J. M., Cordes, K. A. & Gaines, E. D. Light-scattering measurements of hemoglobin binding to the erythrocyte membrane. Evidence for transmembrane effects related to a disulfonic stilbene binding to band 3. Biochemistry 19, 1447–1454 (1980).

    Article  CAS  Google Scholar 

  18. Hsu, L. & Morrison, M. The interaction of human erythrocyte band 3 with cytoskeletal proteins. Archiv. Biochem. Biophys. 227, 31–38 (1983).

    Article  CAS  Google Scholar 

  19. Macara, I. G., Kuo, S. & Cantley, L. C. Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J. Biol. Chem. 258, 1785–1792 (1983).

    CAS  PubMed  Google Scholar 

  20. Falke, J. J. & Chan, S. I. Molecular mechanisms of band 3 inhibitors. 3. Translocation inhibitors. Biochemistry 25, 7899–7906 (1986).

    Article  CAS  Google Scholar 

  21. Chetrite, G. & Cassoly, R. Affinity of hemoglobin for the cytoplasmic fragment of human erythrocyte membrane band 3. Eqilibrium measurements at physiological pH using matrix-bound proteins: the effects of ionic strength, deoxygenation and of 2,3,-diphosphoglycerate. J. Mol. Biol. 185, 639–644 (1985).

    Article  CAS  Google Scholar 

  22. Galanter, W. L. & Labotka, R. J. The binding of nitrate to the human anion exchange protein (AE1) studied with 14C nuclear magnetic resonance. Biochim. Biophys. Acta 1079, 146–151 (1991).

    Article  CAS  Google Scholar 

  23. Shingles, R., Roh, M. H. & McCarty, R. E. Direct measurement of nitrite transport across erythrocyte membrane vesicles using the fluorescent probe, 6-methoxy-N-(3-sulfopropyl) quinolinium. J. Bioenerg. Biomembr. 29, 611–616 (1997).

    Article  CAS  Google Scholar 

  24. Soszynski, M. & Bartosz, G. Penetration of erythrocyte membrane by peroxynitrite: participation of the anion exchange protein. Biochem. Mol. Biol. Int. 43, 319–325 (1997).

    CAS  PubMed  Google Scholar 

  25. Czerwinski, M. et al. Degradation of the human erythrocyte membrane band 3 studied with the monoclonal antibody directed against an epitope on the cytoplasmic fragment of band 3. Eur. J. Biochem. 174, 647–654 (1988).

    Article  CAS  Google Scholar 

  26. Telen, M. J., Scearce, R. M. & Haynes, B. Human erythrocyte antigens. III. Characterization of a panel of murine monoclonal antibodies that react with human erythrocyte and erythroid precursor membranes. Vox Sang. 52, 236–243 (1987).

    Article  CAS  Google Scholar 

  27. Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    Article  CAS  Google Scholar 

  28. Vaughn, M. W., Huang, K.-T., Kuo, L. & Liao, J. C. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J. Biol. Chem. 275, 2342–2348 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Telen for providing antibody to AE1 and for advice. This work was supported by an AHA postdoctoral fellowship to J.R.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Stamler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawloski, J., Hess, D. & Stamler, J. Export by red blood cells of nitric oxide bioactivity. Nature 409, 622–626 (2001). https://doi.org/10.1038/35054560

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35054560

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing