Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3

Abstract

The Bcl-2-related survival proteins confer cellular resistance to a wide range of agents. Bcl-xL-expressing hepatocyte cell lines are resistant to tumour necrosis factor and anti-cancer drugs, but are more sensitive than isogenic control cells to antimycin A, an inhibitor of mitochondrial electron transfer. Computational molecular docking analysis predicted that antimycin A interacts with the Bcl-2 homology domain 3 (BH3)-binding hydrophobic groove of Bcl-xL. We demonstrate that antimycin A and a Bak BH3 peptide bind competitively to recombinant Bcl-2. Antimycin A and BH3 peptide both induce mitochondrial swelling and loss of ΔΨm on addition to mitochondria expressing Bcl-xL. The 2-methoxy derivative of antimycin A3 is inactive as an inhibitor of cellular respiration but still retains toxicity for Bcl-xL+ cells and mitochondria. Finally, antimycin A inhibits the pore-forming activity of Bcl-xL in synthetic liposomes, demonstrating that a small non-peptide ligand can directly inhibit the function of Bcl-2-related proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bcl-xL expression confers paradoxical sensitivity to antimycin A.
Figure 2: Antimycin A induces Bcl-xL-dependent mitochondrial swelling and depolarization.
Figure 3: Effects of antimycin A on isolated mitochondria.
Figure 4: Molecular model of antimycin A bound to Bcl-xL.
Figure 5: Binding of antimycin A3 to Bcl-2 protein is inhibited by BH3 peptide.
Figure 6: Antimycin blocks Bcl-xL pore activity.
Figure 7: Binding and functional studies of antimycin A3 derivatives.

Similar content being viewed by others

References

  1. Kelekar, A. & Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol. 8 , 324–330 (1998).

    Article  CAS  Google Scholar 

  2. Chittenden, T. et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 14 , 5589–5596 (1995).

    Article  CAS  Google Scholar 

  3. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  Google Scholar 

  4. Holinger, E. P., Chittenden, T. & Lutz, R. J. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J. Biol. Chem. 274, 13298–13304 (1999).

    Article  CAS  Google Scholar 

  5. Cosulich, S. C., Worrall, V., Hedge, P. J., Green, S. & Clarke, P. R. Regulation of apoptosis by BH3 domains in a cell-free system. Curr. Biol. 7, 913–920 (1997).

    Article  CAS  Google Scholar 

  6. Kroemer, G., Zamzami, N. & Susin, S. A. Mitochondrial control of apoptosis. Immunol. Today 18, 44–51 ( 1997).

    Article  CAS  Google Scholar 

  7. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 ( 1998).

    Article  CAS  Google Scholar 

  8. Zamzami, N. et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661–1672 (1995).

    Article  CAS  Google Scholar 

  9. Zamzami, N. et al. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183, 1533–1544 (1996).

    Article  CAS  Google Scholar 

  10. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132 –1136 (1997).

    Article  CAS  Google Scholar 

  11. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441– 446 (1999).

    Article  CAS  Google Scholar 

  12. Fisher, D. E. Apoptosis in cancer therapy: crossing the threshold. Cell 78, 539–542 (1994).

    Article  CAS  Google Scholar 

  13. Minn, A. J., Rudin, C. M., Boise, L. H. & Thompson, C. B. Expression of Bcl-xL can confer a multidrug resistance phenotype. Blood 86, 1903–1910 ( 1995).

    CAS  PubMed  Google Scholar 

  14. Decaudin, D. et al. Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. Cancer Res. 57, 62–67 ( 1997).

    CAS  PubMed  Google Scholar 

  15. Slater, E. C. & Colpa-Boonstra, J. P. in Haematin Enzymes (eds Falk, J. E., Lemberg, R. and Morton, R. K.) 575– 592 (Pergamon, Oxford, 1961).

    Google Scholar 

  16. Salvioli, S., Ardizzoni, A., Franceschi, C. & Cossarizza, A. JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411, 77–82 (1997).

    Article  CAS  Google Scholar 

  17. Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G. & Franceschi, C. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45 (1993).

    Article  CAS  Google Scholar 

  18. Smiley, S. T. et al. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl Acad. Sci. USA 88, 3671–3675 (1991).

    Article  CAS  Google Scholar 

  19. Mancini, M. et al. Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J. Cell Biol. 138, 449– 469 (1997).

    Article  CAS  Google Scholar 

  20. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin-1-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93 , 14559–14563 (1996).

    Article  CAS  Google Scholar 

  21. Zoratti, M. & Szabo, I. The mitochondrial permeability transition . Biochim. Biophys. Acta 1241, 139– 176 (1995).

    Article  Google Scholar 

  22. Fonyo, A., Lukacs, G. & Ligeti, E. Participation of inorganic phosphate in the chemiosmotic mechanism of mitochondrial energy transduction. Acta Biol. Med. Ger. 40, 907–914 ( 1981).

    CAS  PubMed  Google Scholar 

  23. Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 257, 1078–1082 ( 1992).

    Article  CAS  Google Scholar 

  24. Berden J. A. & Slater, E. C. The allosteric binding of antimycin to cytochrome b in the mitochondrial membrane. Biochim. Biophys. Acta 256, 199–215 (1972).

    Article  CAS  Google Scholar 

  25. vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T. & Thompson, C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627–637 ( 1997).

    Article  CAS  Google Scholar 

  26. Miyoshi, H. et al. A model of antimycin A binding based on structure-activity studies of synthetic antimycin A analogues. Biochim. Biophys. Acta 1229, 149–154 ( 1995).

    Article  Google Scholar 

  27. Tokutake, N., Miyoshi, H., Satoh, T., Hatano, T. & Iwamura, H. Structural factors of antimycin A molecule required for inhibitory action. Biochim. Biophys. Acta 1185, 271–278 (1994).

    Article  CAS  Google Scholar 

  28. Dunshee, B. R., Leben, C., Keitt, G. W. & Strong, F. M. The isolation and properties of antimycin A. J. Am. Chem. Soc. 71 , 2436–2437 (1949).

    Article  CAS  Google Scholar 

  29. Xia, D. et al. Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science 277, 60–66 (1997).

    Article  CAS  Google Scholar 

  30. Hennet, T., Bertoni, G., Richter, C. & Peterhans, E. Expression of BCL-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity. Cancer Res. 53, 1456–1460 (1993).

    CAS  PubMed  Google Scholar 

  31. Narita, M. et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria . Proc. Natl Acad. Sci. USA 95, 14681– 14686 (1998).

    Article  CAS  Google Scholar 

  32. McDonnell, J. M., Fushman, D., Milliman, C.L, Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634 ( 1999).

    Article  CAS  Google Scholar 

  33. Minn, A. J. et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes . Nature 385, 353–357 (1997).

    Article  CAS  Google Scholar 

  34. vander Heiden, M. G. et al. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  Google Scholar 

  35. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  Google Scholar 

  36. Zamzami, N. et al. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16, 1055–1063 ( 1998).

    Article  CAS  Google Scholar 

  37. Cheng, E. H. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases . Science 278, 1966–1968 (1997).

    Article  CAS  Google Scholar 

  38. Clem, R. J. et al. Modulation of cell death by Bcl-XL through caspase interaction . Proc. Natl Acad. Sci. USA 95, 554– 559 (1998).

    Article  CAS  Google Scholar 

  39. Lewis, J. et al. Inhibition of virus-induced neuronal apoptosis by Bax. Nature Med. 5, 832–835 ( 1999).

    Article  CAS  Google Scholar 

  40. Middleton, G., Nunez, G. & Davies, A. M. Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 122, 695–701 (1996).

    CAS  PubMed  Google Scholar 

  41. Kiefer, M. C. et al. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374, 736–739 (1995).

    Article  CAS  Google Scholar 

  42. Campo, M. L., Kinnally, K. W. & Tedeschi, H. The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. J. Biol. Chem. 267, 8123–8127 (1992).

    CAS  PubMed  Google Scholar 

  43. Wu, J. C., Merlino, G., Cveklova, K., Mosinger, B. Jr., & Fausto, N. Autonomous growth in serum-free medium and production of hepatocellular carcinomas by differentiated hepatocyte lines that overexpress transforming growth factor alpha 1. Cancer Res. 54, 5964–5973 (1994).

    CAS  PubMed  Google Scholar 

  44. Wu, J. C., Merlino, G. & Fausto, N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc. Natl Acad. Sci. USA 91, 674–678 (1994).

    Article  CAS  Google Scholar 

  45. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R. D. & Korsmeyer, S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    Article  CAS  Google Scholar 

  46. Mayer, L. D., Hope, M. J. & Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161 –168 (1986).

    Article  CAS  Google Scholar 

  47. Stewart, P. R. Colorimetric determination of phospholipids with ammonium ferrothiocyanate . Anal. Biochem. 104, 10– 14 (1980).

    Article  CAS  Google Scholar 

  48. van Tamelen, E. E., Dickie, J. P., Loomans, M. E., Dewey, R. S. & Strong, F. M. The chemistry of antimycin A X: structure of the antimycins. J. Am. Chem. Soc. 83, 1639–1646 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Fausto for providing TAMH, AML-12 and NMH cell lines; C. Thompson for providing FL5.12-Bcl-xL and FL5.12-neo cell lines; J. Foote and J. O'Neill for help and discussions; and R. Wiseman for assistance with oximetry measurements. This work was supported by NIH grant CA15704-26 (D.M.H.) and by an American Cancer Society grant RPG-97-173-01-LBC (K.Y.J.Z.). S.T. is an American Gastroenterological Association Research Scholar and a recipient of the Daland Fellowship for Research in Clinical Medicine from American Philosophical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Hockenbery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzung, SP., Kim, K., Basañez, G. et al. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3, 183–191 (2001). https://doi.org/10.1038/35055095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing