Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Role of ampa receptor endocytosis in synaptic plasticity

Key Points

  • The activity of several signalling receptor families is modulated by their endocytosis from the cell surface. Internalization of receptors can not only attenuate further response of receptors to extracellular signals, but also relocalize the receptors into functional intracellular signalling complexes. Despite significant differences in structure and function between receptor families, there are steps in the process of receptor endocytosis that are often conserved. Receptor phosphorylation, association with adaptor proteins and internalization via clathrin-coated pits regulates the surface expression of many receptor types following agonist stimulation.

  • Studies over the past five years or so have suggested that AMPA-type glutamate receptors (AMPARs) are regulated by their physical transport in and out of the synaptic membrane. Throughout development, synapses are observed that do not express detectable levels of AMPARs. Such synapses can be detected electrophysiologically, and during long-term potentiation (LTP) can be modified such that functional AMPARs rapidly appear, suggesting the possibility of regulated receptor insertion. Activity-dependent long-term depression (LTD), however, is associated with a rapid loss of surface, synaptic AMPARs indicating possible internalization.

  • Recent immunocytochemical and biochemical studies have provided direct evidence that AMPARs are, in fact, internalized in response to several extracellular stimuli. Similar to other receptor types, endocytosis of AMPARs is through clathrin-coated pits and involves an association of the receptor with a clathrin-adaptor protein. Disruption of AMPAR endocytosis blocks the expression of common forms of LTD, indicating that internalization of the receptors is involved in these forms of plasticity.

  • Several identified signalling pathways drive the endocytosis of AMPARs. Activation of insulin, NMDA, metabotropic glutamate and AMPA receptors can all stimulate the endocytosis of AMPARs. Cytosolic calcium elevations and calcineurin activation are necessary for AMPAR endocytosis triggered by several of the signalling pathways. The interactions of the GluR2 AMPAR subunit with the cytosolic proteins PICK1 and GRIP/ABP are regulated by phosphorylation of the receptor and have been implicated in the regulation of AMPAR endocytosis.

  • The level of surface expression of AMPARs is apparently regulated by a balance of the insertion and removal of receptors. In addition to regulated endocytosis, AMPARs are also subject to active delivery to the synapse following CaMKII activation. These two phenomenon provide mechanisms by which synaptic strength can be rapidly modulated. AMPARs also constitutively cycle at the synaptic surface with equal rates of exocytosis and endocytosis, providing a means to maintain synaptic receptor expression levels.

  • Studies of the regulation of AMPAR endocytosis have helped in the development of detailed models for the expression of LTD at hippocampal and cerebellar synapses. LTD involves the coordinated modulation of regulatory proteins that interact with AMPARs and are potentially involved in receptor stabilization, as well as the modification of the endocytic machinery itself. This causes rapid internalization of AMPARs, thereby reducing overall synaptic strength.

Abstract

Activity-mediated changes in the strength of synaptic communication are important for the establishment of proper neuronal connections during development and for the experience-dependent modification of neural circuitry that is believed to underlie all forms of behavioural plasticity. Owing to the wide-ranging significance of synaptic plasticity, considerable efforts have been made to identify the mechanisms by which synaptic changes are triggered and expressed. New evidence indicates that one important expression mechanism of several long-lasting forms of synaptic plasticity might involve the physical transport of AMPA-type glutamate receptors in and out of the synaptic membrane. Here, we focus on the rapidly accumulating evidence that AMPA receptors undergo regulated endocytosis, which is important for long-term depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytosis of cell-surface signalling receptors.
Figure 2: Activation of several membrane receptors can trigger AMPAR endocytosis.
Figure 3: Electron micrographs of coated vesicles in dendritic spines.
Figure 4: Model of regulated AMPAR endocytosis during long-term depression in two systems.
Figure 5: Model of AMPAR cycling and insertion.

Similar content being viewed by others

References

  1. Bliss, T. V. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 , 31–39 (1993).

    CAS  PubMed  Google Scholar 

  2. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    CAS  PubMed  Google Scholar 

  3. Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115–118 (1995).

    CAS  PubMed  Google Scholar 

  4. Swope, S. L., Moss, S. I., Raymond, L. A. & Huganir, R. L. Regulation of ligand-gated ion channels by protein phosphorylation. Adv. Sec. Mess. Phosphopro. Res. 33, 49– 78 (1999).

    CAS  Google Scholar 

  5. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    CAS  PubMed  Google Scholar 

  6. Zhang, J. et al. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels 5, 193–199 (1997).

    CAS  PubMed  Google Scholar 

  7. Krupnick, J. G. & Benovic, J. L. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 38, 289– 319 (1998).

    CAS  PubMed  Google Scholar 

  8. Lefkowitz, R. J., G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).

    CAS  PubMed  Google Scholar 

  9. Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275, 23120–23126 (2000).

    CAS  PubMed  Google Scholar 

  10. Tsao, P. & Von Zastrow, M. Downregulation of G protein-coupled receptors. Curr. Opin. Neurobiol. 10, 365 –369 (2000).

    CAS  PubMed  Google Scholar 

  11. DiGuglielmo, G. M. et al. Insulin receptor internalization and signalling. Mol. Cell. Biochem. 182, 59–63 (1998).

    CAS  Google Scholar 

  12. Ceresa, B. P. & Schmid, S. L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell. Biol. 12, 204–210 (2000).

    CAS  PubMed  Google Scholar 

  13. Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086– 2089 (1996).

    CAS  PubMed  Google Scholar 

  14. Wiley, H. S. & Burke, P. M. Regulation of receptor tyrosine kinase signaling by endocytic trafficking. Traffic 2, 12–18 (2001).

    CAS  PubMed  Google Scholar 

  15. Beattie, E. C., Howe, C. L., Wilde, A., Brodsky, F. M. & Mobley, W. C. NGF signals through TrkA to increase clathrin at the plasma membrane and enhance clathrin-mediated membrane trafficking. J. Neurosci. 20, 7325–7333 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Grimes, M. L. et al. Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J. Neurosci. 16, 7950–7964 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sorkin, A. & Carpenter, G. Interaction of activated EGF receptors with coated pit adaptins. Science 261, 612 –615 (1993).

    CAS  PubMed  Google Scholar 

  18. Wilde, A. et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687 ( 1999).

    CAS  PubMed  Google Scholar 

  19. Tehrani, M. H. & Barnes, E. M. Agonist-dependent internalization of γ-aminobutyric acidA/benzodiazepine receptors in chick cortical neurons. J. Neurochem. 57, 1307–1312 (1991).

    CAS  PubMed  Google Scholar 

  20. Tehrani, M. H. & Barnes, E. M. Identification of GABAA/benzodiazepine receptors on clathrin-coated vesicles from rat brain. J. Neurochem. 60, 1755– 1761 (1993).

    CAS  PubMed  Google Scholar 

  21. Tehrani, M. H. & Barnes, E. M. Sequestration of γ-aminobutyric acidA receptors on clathrin-coated vesicles during chronic benzodiazepine administration in vivo. J. Pharmacol. Exp. Ther. 283, 384–390 (1997).

    CAS  PubMed  Google Scholar 

  22. Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallager, D. W., Lakoski, J. M., Gonsalves, S. F. & Rauch, S. L. Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 308, 74–77 ( 1984).

    CAS  PubMed  Google Scholar 

  24. DeFea, K. A. et al. Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell. Biol. 148, 1267–1281 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McDonald, P. H. et al. Beta-arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574– 1577 (2000).

    CAS  PubMed  Google Scholar 

  26. Riccio, A., Pierchala, B. A., Ciarallo, C. L. & Ginty, D. D. An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097– 1100 (1997).

    CAS  PubMed  Google Scholar 

  27. Barnes, E. M. Use-dependent regulation of GABAA receptors. Int. Rev. Neurobiol. 39, 53–76 ( 1996).

    CAS  PubMed  Google Scholar 

  28. Malenka, R. C. & Nicoll, R. A. Long-term potentiation — a decade of progress? Science 285, 1870–1874 (1999).

    CAS  PubMed  Google Scholar 

  29. Kullmann, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002 ( 1995).

    CAS  PubMed  Google Scholar 

  30. Malenka, R. C. & Nicoll, R. A. Silent synapses speak up. Neuron 19, 473– 476 (1997).

    CAS  PubMed  Google Scholar 

  31. Liao, D., Zhang, X., O'Brien, R., Ehlers, M. D. & Huganir, R. L. Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons. Nature Neurosci. 2, 37–43 (1999).

    CAS  PubMed  Google Scholar 

  32. Petralia, R. S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neurosci. 2, 31–36 (1999 ).

    CAS  PubMed  Google Scholar 

  33. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21 , 545–559 (1998).

    CAS  PubMed  Google Scholar 

  34. Takumi, Y., Ramírez-León, V., Laake, P., Rinvik, E. & Ottersen, O. P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nature Neurosci. 2, 618–624 (1999).References 32 34 used immunogold labelling of AMPARs to analyse quantitatively the AMPAR content at individual synapses in the CA1 region of the hippocampus, and found that a proportion of synapses contain no or very small numbers of AMPARs, thus providing anatomical support for the silent synapse hypothesis.

    CAS  PubMed  Google Scholar 

  35. Racca, C., Stephenson, R. A., Streit, R., Roberts, J. D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gomperts, S. N., Rao, A., Craig, A. M., Malenka, R. C. & Nicoll, R. A. Postsynaptically silent synapses in single neuron cultures. Neuron 21, 1443– 1451 (1998).

    CAS  PubMed  Google Scholar 

  37. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427– 434 (1995).

    CAS  PubMed  Google Scholar 

  38. Liao, D., Hessler, N. A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 ( 1995).

    CAS  PubMed  Google Scholar 

  39. Durand, G. M., Kolvachuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71 –75 (1996).References 37 39 provided electrophysiological evidence for the existence of silent synapses and showed that during LTP, silent synapses are converted to functional synapses, presumably by the addition or modification of AMPARs.

    CAS  PubMed  Google Scholar 

  40. Lissin, D. V. et al. Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc. Natl Acad. Sci. USA 95, 7097–7102 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 , 892–896 (1998).

    CAS  PubMed  Google Scholar 

  42. O'Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation . Neuron 21, 1067–1078 (1998).

    CAS  PubMed  Google Scholar 

  43. Lissin, D. V., Carroll, R. C., Nicoll, R. A., Malenka, R. C. & von Zastrow, M. Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons. J. Neurosci. 19, 1263–1272 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors . Proc. Natl Acad. Sci. USA 96, 14112– 14117 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beattie, E. C. et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neurosci. 3, 1291 –1300 (2000).

    CAS  PubMed  Google Scholar 

  46. Man, H.-Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25, 649–662 (2000).

    CAS  PubMed  Google Scholar 

  47. Ehlers, M. D., Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511– 525 (2000).References 44 47 showed that the endocytosis of AMPARs occurs via a process involving dynamin and clathrin-coated pits and that calcium-dependent activation of protein phosphatases (references 45, 47 ) might be important in the enhancement of AMPAR endocytosis owing to NMDAR or AMPAR activation.

    CAS  PubMed  Google Scholar 

  48. Snyder, E. M. et al. Group I metabotropic glutamate receptor activation initiates internalization of AMPA receptors in cultured hippocampal neurons. Soc. Neurosci. Abstr. 134, 15 ( 2000).

    Google Scholar 

  49. Zhou, Q., Xiao, M. & Nicoll, R. A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl Acad. Sci. USA 98, 1261–1266 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 ( 2000).

    CAS  PubMed  Google Scholar 

  51. Carroll, R. C., Lissin, D. V., von Zastrow, M. Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999).The first demonstration that the expression of long-term depression is caused, at least in part, by a loss of AMPARs from synapses.

    CAS  PubMed  Google Scholar 

  52. Heynen, A. J., Quinlan, E. M., Bae, D. C. & Bear, M. F. Bidirectional, activity-dependent regulation of glutamate receptors in the adult hippocampus in vivo. Neuron 28, 527–536 (2000).

    CAS  PubMed  Google Scholar 

  53. Lüscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649– 658 (1999).

    PubMed  Google Scholar 

  54. Lin, J. W. et al. Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neurosci. 3, 1282–1290 (2000).

    CAS  PubMed  Google Scholar 

  55. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl Acad. Sci. USA 86, 9574 –9578 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Mulkey, R. M., Herron, C. E. & Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051– 1055 (1993).

    CAS  PubMed  Google Scholar 

  57. Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486– 488 (1994).

    CAS  PubMed  Google Scholar 

  58. O'Dell, T. J. & Kandel, E. R. Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of phosphatases. Learn. Mem. 1, 129–139 ( 1994).

    CAS  PubMed  Google Scholar 

  59. Lai, M. M. et al. The calcineurin–dynamin 1 complex as a calcium sensor for synaptic vesicle endocytosis. J. Biol. Chem. 274 , 25963–25966 (1999).

    CAS  PubMed  Google Scholar 

  60. Slepnev, V. I., Ochoa, G. C., Butler, M. H., Grabs, D. & DeCamilli, P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281, 821–824 (1998).

    CAS  PubMed  Google Scholar 

  61. Linden, D. J. & Connor, J. A. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254, 1656–1659 (1991).

    CAS  PubMed  Google Scholar 

  62. Crepel, F. & Jaillard, D. Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. Neuroreport 1, 133–136 ( 1990).

    CAS  PubMed  Google Scholar 

  63. Hartell, N. A. cGMP acts within cerebellar Purkinje cells to produce long-term depression via mechanisms involving PKC and PKG. NeuroReport 5 , 833–836 (1994).

    CAS  PubMed  Google Scholar 

  64. Matsuda, S., Mikawa, S. & Hirai, H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J. Neurochem. 73, 1765– 1768 (1999).

    CAS  PubMed  Google Scholar 

  65. Xia, J., Chung, H. J., Wihler, C., Huganir, R. L. & Linden, D. J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 28, 499–510 ( 2000).References 64 and 65 present evidence that PKC-mediated phosphorylation of GluR2 and the consequent disruption of GluR2 interactions with PDZ-domain-containing proteins leads to the internalization of AMPARs during long-term depression at parallel-fibre–Purkinje-cell synapses.

    CAS  PubMed  Google Scholar 

  66. Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nature Rev. Neurosci. 1, 133–141 ( 2000).

    CAS  Google Scholar 

  67. Braithwaite, S. P., Meyer, G. & Henley, J. M. Interactions between AMPA receptors and intracellular proteins. Neuropharmacology 39, 919– 930 (2000).

    CAS  PubMed  Google Scholar 

  68. Leonard, A. S., Davare, M. A., Horne, M. C., Garner, C. G. & Hell, J. W. SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit. J. Biol. Chem. 273, 19518–19524 (1998).

    CAS  PubMed  Google Scholar 

  69. O'Brien, R. J. et al. Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23, 309–323 (1999).

    CAS  PubMed  Google Scholar 

  70. Osten, P. et al. The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and α- and β-SNAPs. Neuron 21, 99–110 ( 1998).

    CAS  PubMed  Google Scholar 

  71. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 ( 1998).

    CAS  PubMed  Google Scholar 

  72. Song, I. et al. Interaction of the N-ethylmaleimide-sensitive factor with AMPA receptors. Neuron 21, 393– 400 (1998).References 70 72 showed that NSF interacts with the intracellular tail of GluR2 and that disruption of this interaction causes a decrease in synaptic efficacy that subsequently (references 53, 74 ) was shown to be due to the loss of synaptic AMPARs.

    CAS  PubMed  Google Scholar 

  73. Rothman, J. E., Mechanisms of intracellular protein transport. Nature 372, 55–63 (1994).

    CAS  PubMed  Google Scholar 

  74. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24, 389–399 (1999).

    CAS  PubMed  Google Scholar 

  75. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF-dependent mechanism. Neuron 23, 365–376 (1999).

    CAS  PubMed  Google Scholar 

  76. Lledo, P. M., Zhang, X., Sudhof, T. C, Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation . Science 279, 399–403 (1998).Presents evidence that postsynaptic membrane fusion is important for the expression of long-term potentiation.

    CAS  PubMed  Google Scholar 

  77. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279– 284 (1997).

    CAS  PubMed  Google Scholar 

  78. Osten, P. et al. Mutagenesis reveals a role for ABP/GRIP binding to GluR2 in synaptic surface accumulation of the AMPA receptor. Neuron 27 , 313–325 (2000).

    CAS  PubMed  Google Scholar 

  79. Daw, M. I. et al. PDZ proteins interacting with C-terminal GluR2/3 involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28, 873–886 ( 2000).Presents evidence that the interactions of GluR2/3 with GRIP/ABP might be important for the intracellular retention of AMPARs after they are internalized and that the return of AMPARs to the membrane surface requires activity of PKC.

    CAS  PubMed  Google Scholar 

  80. Chung, H. J., Xia, J., Scannevin, R. H., Zhang, X. & Huganir, R. L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20, 7258– 7267 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Matsuda, S., Launey, R., Mikawa, S. & Hirai, H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 19, 2765– 2774 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Isaac, J. T., Crair, M. C., Nicoll, R. A. & Malenka, R. C. Silent synapses during development of thalamocortical inputs. Neuron 18, 269–280 ( 1997).

    CAS  PubMed  Google Scholar 

  83. Li, P. & Zhuo, M. Silent glutamatergic synapses and nociception in mammalian spinal cord. Nature 393, 695 –698 (1998).

    CAS  PubMed  Google Scholar 

  84. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, P. et al. AMPA receptor-PDZ interactions in facilitation of spinal sensory synapses. Nature Neurosci. 2, 972– 977 (1999).

    CAS  PubMed  Google Scholar 

  86. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284 , 1811–1816 (1999).

    CAS  PubMed  Google Scholar 

  87. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000). References 86 and 87 present an elegant series of experiments showing that long-term potentiation involves the CaMKII-dependent delivery of AMPARs to the synaptic plasma membrane.

    CAS  PubMed  Google Scholar 

  88. Barria, A., Derkach, V. & Soderling, T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272, 32727–32730 (1997).

    CAS  PubMed  Google Scholar 

  89. Zhu, J. J., Esteban, J. A., Hayashi, Y. & Malinow, R. Synaptic potentiation during early development: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nature Neurosci. 3, 1098–1106 (2000).

    CAS  PubMed  Google Scholar 

  90. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    CAS  PubMed  Google Scholar 

  91. Chen, L. et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408, 936– 943 (2000).Identifies a role for the protein stargazin in the synaptic targeting of AMPARs in cerebellar granule cells. This protein can interact both with AMPARs, which allows targeting of the receptors to the membrane surface, and with PSD95, which seems to be necessary for the synaptic clustering of the AMPARs.

    CAS  PubMed  Google Scholar 

  92. Broutman, G. & Baudry, M. Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J. Neurosci. 21, 27–34 ( 2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu, W. Y. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 ( 2001).

    CAS  PubMed  Google Scholar 

  94. Kameyama, K., Lee, H. K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163– 1175 (1998).

    CAS  PubMed  Google Scholar 

  95. Lee, H.-K., Barbarosie, M., Kameyama, K., Bear, M. F. & Huganir, R. L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 ( 2000).

    CAS  PubMed  Google Scholar 

  96. Luscher, C., Nicoll, R. A., Malenka, R. C. & Muller, D. Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nature Neurosci. 3, 545–550 (2000).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

AMPARs

insulin receptor

EGFR

TrkA

AP2

GABAARs

NMDARs

dynamin

amphiphysin

PP2B

PP1

PKC

GluR2

NSF

GRIP1

PICK

SNAP

GluR1

CaMKII

GluR4

calpain

PKA

ENCYCLOPEDIA OF LIFE SCIENCES

AMPA receptors

Glossary

CLATHRIN

A major structural component of coated vesicles that are implicated in protein transport. Clathrin heavy and light chains form a triskelion, the main building element of clathrin coats.

AP2

A heterotetrameric complex that serves as an adaptor, linking membrane receptors to clathrin-coated pit endocytic machinery.

BENZODIAZEPINES

Pharmacologically active molecules with sedative and anxiolytic effects. They act by binding to the GABA receptor γ subunit and potentiating the response elicited by the transmitter.

ENDOSOME

Organelle that carries materials ingested by the cell and passes them to lysosomes for degradation or recycles them to the cell surface.

SILENT SYNAPSE

A synapse that contains NMDA receptors but no AMPA receptors and therefore is functionally silent during low-frequency, basal synaptic transmission.

EPITOPE-TAGGED MOLECULE

A protein to which the immunological determinant of an antigen has been artificially added, allowing for its subsequent detection with the corresponding antibody.

QUANTAL SIZE

The response of the postsynaptic membrane to the transmitter contained in a single synaptic vesicle.

DOMINANT-NEGATIVE

A mutant protein that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

DYNAMIN

A small GTP-binding protein that is essential for clathrin-mediated endocytosis. It is believed to be involved in fission after invagination of endocytic vesicles.

SYNAPTONEUROSOME

The presynaptic terminal isolated in conjunction with the postsynaptic spine after subcellular fractionation. This structure retains the anatomical integrity of the synapse.

BAPTA-AM

A derivative of the Ca2+ chelator BAPTA with its four carboxylate groups masked by esterifying groups, making it membrane permeable. Upon cleavage by cellular esterases, BAPTA is unable to pass back out of the cell. BAPTA-AM allows buffering of intracellular Ca2+ changes.

PDZ DOMAIN

A peptide-binding domain that is important for the organization of membrane proteins, particularly at cell–cell junctions, including synapses. They can bind to the carboxyl termini of proteins, or can form dimers with other PDZ domains. PDZ domains are named after the proteins in which these sequence motifs were originally identified (PSD95, Discs-large, zona occludens-1).

POSTSYNAPTIC DENSITY

An electron-dense thickening underneath the postsynaptic membrane at excitatory synapses that contains receptors, structural proteins linked to the actin cytoskeleton and signalling machinery, such as protein kinases and phosphatases.

N-ETHYLMALEIMIDE-SENSITIVE FACTOR

An ATPase that is a key component of the membrane fusion machinery.

RECTIFICATION

The property whereby current through a channel does not flow with the same ease from the inside as from the outside. In inward rectification, for instance, current into the cell flows more easily than out of the cell through the same population of channels.

BREFELDIN A

A fungal metabolite that affects membrane transport and the structure of the Golgi apparatus.

TETANUS TOXIN

The causative agent of tetanus. Tetanus toxin blocks transmitter release as a result of synaptobrevin proteolysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, R., Beattie, E., von Zastrow, M. et al. Role of ampa receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2, 315–324 (2001). https://doi.org/10.1038/35072500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35072500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing