Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of an angiogenic mitogen selective for endocrine gland endothelium

Abstract

The known endothelial mitogens stimulate growth of vascular endothelial cells without regard to their tissue of origin. Here we report a growth factor that is expressed largely in one type of tissue and acts selectively on one type of endothelium. This molecule, called endocrine-gland-derived vascular endothelial growth factor (EG-VEGF), induced proliferation, migration and fenestration (the formation of membrane discontinuities) in capillary endothelial cells derived from endocrine glands. However, EG-VEGF had little or no effect on a variety of other endothelial and non-endothelial cell types tested. Similar to VEGF, EG-VEGF possesses a HIF-1 binding site, and its expression is induced by hypoxia. Both EG-VEGF and VEGF resulted in extensive angiogenesis and cyst formation when delivered in the ovary. However, unlike VEGF, EG-VEGF failed to promote angiogenesis in the cornea or skeletal muscle. Expression of human EG-VEGF messenger RNA is restricted to the steroidogenic glands, ovary, testis, adrenal and placenta and is often complementary to the expression of VEGF, suggesting that these molecules function in a coordinated manner. EG-VEGF is an example of a class of highly specific mitogens that act to regulate proliferation and differentiation of the vascular endothelium in a tissue-specific manner.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EG-VEGF cDNA and amino-acid sequences and alignments with homologous proteins.
Figure 2: EG-VEGF is a mitogen, chemoattractant, and inducer of fenestration for specific endothelial cells.
Figure 3: EG-VEGF expression is hypoxia inducible.
Figure 4: Northern blot analyses of human RNA samples from different tissues with an EG-VEGF specific probe.
Figure 5: Expression of EG-VEGF mRNA in testis and ovary.
Figure 6: Selectivity of the in vivo angiogenic effects of EG-VEGF.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nature Med. 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nature Med. 6, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Aird, W. C. et al. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J. Cell Biol. 138, 1117–1124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dellian, M., Witwer, B. P., Salehi, H. A., Yuan, F. & Jain, R. K. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–71 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Simionescu, N. & Simionescu, M. in Cell and Tissue Biology (ed. Weiss, L.) 355–398 (Urban & Schwarzemberg, Baltimore, 1988).

    MATH  Google Scholar 

  9. Palade, G. E., Simionescu, M. & Simionescu, N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. (Suppl.) 463, 11–32 (1979).

    CAS  Google Scholar 

  10. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532 (1992).

    CAS  PubMed  Google Scholar 

  11. Monacci, W. T., Merrill, M. J. & Oldfield, E. H. Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am. J. Physiol. 264, C995–C1002 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Joubert, F. J. & Strydom, D. J. Snake venom. The amino acid sequence of protein A from Dendroaspis polylepis polylepis (black mamba) venom. H.-S. Z. Physiol. Chem. 361, 1787–1794 (1980).

    Article  CAS  Google Scholar 

  14. Boisbouvier, J. et al. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. J. Mol. Biol. 283, 205–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wechselberger, C. et al. The mammalian homologues of frog Bv8 are mainly expressed in spermatocytes. FEBS Lett. 462, 177–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Aravind, L. & Koonin, E. V. A colipase fold in the carboxy-terminal domain of the Wnt antagonists—the Dickkopfs. Curr. Biol. 8, 477–478 (1998).

    Article  Google Scholar 

  18. Klagsbrun, M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions. Semin. Cancer Biol. 3, 81–87 (1992).

    CAS  PubMed  Google Scholar 

  19. Zetter, B. R. Migration of capillary endothelial cells is stimulated by tumour-derived factors. Nature 285, 41–43 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Arbiser, J. L. et al. Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl Acad. Sci. USA 94, 861–866 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts, W. G. & Palade, G. E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 57, 765–772 (1997).

    CAS  PubMed  Google Scholar 

  22. Esser, S. et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140, 947–959 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gospodarowicz, D., Lepine, J., Massoglia, S. & Wood, I. Comparison of the ability of basement membranes produced by corneal endothelial and mouse-derived endodermal PF-HR-9 cells to support the proliferation and differentiation of bovine kidney tubule epithelial cells in vitro. J. Cell Biol. 99, 947–961 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Semenza, G. L. HIF-1: mediator of physiological and pathophysiological response to hypoxia. J. Appl. Physiol. 88, 1474–1480 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Dor, Y., Porat, R. & Keshet, E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am. J. Physiol. 280, C1367–C1374 (2001).

    Article  CAS  Google Scholar 

  26. Collin, O. & Bergh, A. Leydig cells secrete factors which increase vascular permeability and endothelial cell proliferation. Int. J. Androl. 19, 221–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Bassett, D. L. The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am. J. Anat. 73, 251–278 (1943).

    Article  Google Scholar 

  28. Ravindranath, N., Little-Ihrig, L., Phillips, H. S., Ferrara, N. & Zeleznik, A. J. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131, 254–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Goldziher, J. W. & Green, J. A. The polycistic ovary. I. Clinical and histologic features. J. Clin. Endocrinol. Metab. 22, 325–332 (1962).

    Article  Google Scholar 

  30. Phillips, H. S., Hains, J., Leung, D. W. & Ferrara, N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127, 965–967 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Pettersson, A. et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 80, 99–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Gerber, H. P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  34. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med. 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Aiello, L. P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara, N. VEGF: An update on biological and therapeutic aspects. Curr. Opin. Biotech. 11, 617–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Ryan, A. M. et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol. Pathol. 27, 78–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Miao, H. Q. et al. Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: Functional competition of collapsin-1 and vascular endothelial growth factor-165. J. Cell Biol. 146, 233–242 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schweitz, H., Pacaud, P., Diochot., Moinier, D. & Ladzunski, M. MIT(1), a black mamba intestinal toxin with a new and highly potent activity on intestinal contraction. FEBS Lett. 461, 183–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Phillips, H. S., Hains, J. M., Laramee, G. R., Rosenthal, A. & Winslow, J. W. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science 250, 290–294 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Melton, D. A. et al. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gille, H. et al. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific VEGF mutants. J. Biol. Chem. 276, 3222–3230 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Krupnik, V. E. et al. Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301–313 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. van Tilbeurgh, H., Sarda, L., Verger, R. & Cambillau, C. Structure of the pancreatic lipase–procolipase complex. Nature 359, 159–162 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the oligonucleotide-synthesis, DNA-sequencing and protein-purification groups; D. Tran and G. Bennett for protein iodination; P. Schow for cell sorting; M. van Hoy for necropsy; and R. Taylor and P. Tobin for histology. We also thank H. Chen for initial observations and J. Singh and L. Yu for cell culture and transfections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napoleone Ferrara.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeCouter, J., Kowalski, J., Foster, J. et al. Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412, 877–884 (2001). https://doi.org/10.1038/35091000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35091000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing