Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Putting tumours in context

Key Points

  • Cell–cell and cell–ECM signalling contributes to epithelial structure and function and creates innate anticancer mechanisms that suppress tumorigenicity.

  • The development of carcinomas involves progressive changes in the malignant cells, in the associated stromal compartment and in the extracellular milieu. These changes lead to an ever-changing functional disorder, in which the aberrant context affects cell–cell and tissue–tissue interactions.

  • The tumour context includes both normal cells and tissues that aid in the progression of the tumour. The tumour, in turn, modifies the behaviour of the 'normal' component of the tumour.

  • The tumour context is both self-sustaining and progressive, but can be modified through alterations in signalling that affect the structure and function of tumour cells; malignant epithelial cells can be reverted to a normal phenotype despite the aberrant genotype.

  • To achieve reversion of a tumour tissue, both the tumour cells and their microenvironment need to be modified. As such, a combination of signalling inhibitors and agents that 'deactivate' the reactive stroma is required.

  • Haematologic tumours develop (and can now be treated) according to many of these same principles.

  • A better understanding of the mechanisms by which the tumour context creates the functional disorder within the tumour organ is a means of potentiating existing anticancer therapies and of developing a new generation of even more successful therapies.

Abstract

The interactions between cancer cells and their micro- and macroenvironment create a context that promotes tumour growth and protects it from immune attack. The functional association of cancer cells with their surrounding tissues forms a new 'organ' that changes as malignancy progresses. Investigation of this process might provide new insights into the mechanisms of tumorigenesis and could also lead to new therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normal versus malignant breast tumours.
Figure 2: Mechanisms of cell–cell and cell–ECM interactions.
Figure 3: Differences in stroma between tumours.
Figure 4: The tumour microenvironment assay.

Similar content being viewed by others

References

  1. Roskelley, C. D., Srebrow, A. & Bissell, M. J. A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr. Opin. Cell Biol. 7, 736–747 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwartz, M. A. & Baron, V. Interactions between mitogenic stimuli, or, a thousand and one connections. Curr. Opin. Cell Biol. 11, 197–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Radisky, D., Muschler, J. & Bissell, M. J. Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Invest. (in the press).

  5. Kumar, N. M. and Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Green, K. J. & Gaudry, C. A. Are desmosomes more than tethers for intermediate filaments? Nature Rev. Mol. Cell. Biol. 1, 208–216 (2000).

    Article  CAS  Google Scholar 

  7. Tsukita, S., Furuse, M. and Itoh, M. Multifunctional strands in tight junctions. Nature Rev. Mol. Cell. Biol. 2, 285–293 (2001).

    Article  CAS  Google Scholar 

  8. Runswick, S. K., O'Hare, M. J., Jones, L., Streuli, C. H. & Garrod, D. R. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nature Cell Biol. 3, 823—830 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Christofori, G. & Semb, H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem. Sci. 24, 73–76 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Raghavan, S., Bauer, C., Mundschau, G., Li, Q. & Fuchs, E. Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J. Cell Biol. 150, 1149–1160 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lochter, A. et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J. Cell Biol. 139, 1861–1872 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hordijk, P. L. et al. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278, 1464–1466 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H. & Christofori, G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392, 190–193 (1998).Using E-cadherin knockout mice and dominant-negative forms of this protein, the authors show that loss of E-cadherin is associated with pancreatic β-cell carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  14. Hazan, R. B., Phillips, G. R., Qiao, R. F., Norton, L. & Aaronson, S. A. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J. Cell Biol. 148, 779–790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Auersperg, N. et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc. Natl Acad. Sci. USA 96, 6249–6254 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicholson, B. J., Weber, P. A., Cao, F., Chang, H., Lampe, P. & Goldberg, G. The molecular basis of selective permeability of connexins is complex and includes both size and charge. Braz. J. Med. Biol. Res. 33, 369–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Hanna, E. A. et al. Gap juncitonal intercellular communication and connexin43 expression in human ovarian surface epithelial cells and ovarian carcinomas in vivo and in vitro. Carcinogenesis 20, 1369–1373 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Locke, D. Gap junctions in normal and neoplastic mammary gland. J. Pathol. 186, 343–349 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Saunders, M. M. et al. Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res. 61, 1765–1767 (2001).

    CAS  PubMed  Google Scholar 

  20. Temme, A. et al. High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin 32. Curr. Biol. 7, 713–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Moennikes, O., Buchmann, A., Willecke, K., Traub, O. & Schwarz, M. Hepatocarcinogenesis in female mice with mosaic expression of connexin32. Hepatology 32, 501–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Z. Q. et al. Suppression of tumorigenicity of human lung carcinoma cells after transfection with connexin43. Carcinogenesis 19, 1889–1894 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. King, T. J. et al. Reduced levels of connexin43 in cervical dysplasia: inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression. Carcinogenesis 21, 1097–1109 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Krutovskikh, V. A. et al. Differential effect of subcellular communication impairing gap junction protein connexin43 on tumor cell grown in vivo. Oncogene 19, 505–513 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Mesnil, M. et al. Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res. 55, 629–639 (1995).

    CAS  PubMed  Google Scholar 

  26. Ito, A. et al. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105, 1189–1197 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ronnov-Jessen, L., Petersen, O. W. & Bissell, M. J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76, 69–125 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Sager, R. Expression genetics in cancer: shifting the focus from DNA to RNA. Proc. Natl Acad. Sci. USA 94, 952–955 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sternlicht, M. D., Kedeshian, P., Shoa, Z. M., Safarians, S. & Barsky, S. H. The human myoepithelial cell is a natural tumor suppressor. Clin. Cancer Res. 3, 1949–1958 (1997).

    CAS  PubMed  Google Scholar 

  30. Stoler, D. L. et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc. Natl Acad. Sci. USA 96, 15121–15126 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frame, S. & Balmain, A. Integration of positive and negative growth signals during Ras pathway activation in vivo. Curr. Opin. Genet. Dev. 10, 106–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D. & Smith, H. S. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274, 2057–2059 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Washington, C., Dalbègue, F., Abreo, F., Taubenberger, J. K. & Lichy, J. H. Loss of heterozygosity in fibrocystic change of the breast. Am. J. Pathol. 157, 323–329 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bissell, M. J. et al. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59, 1757–1763 (1999).

    CAS  PubMed  Google Scholar 

  35. Sieweke, M. H. & Bissell, M. J. The tumor-promoting effect of wounding: a possible role for TGF-β-induced stromal alterations. Crit. Rev. Oncog. 5, 297–311 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Dolberg, D. S., Hollingsworth, R., Hertle, M. & Bissell, M. J. Wounding and its role in RSV-mediated tumor formation. Science 230, 676–678 (1985).

    Article  CAS  PubMed  Google Scholar 

  37. Sieweke, M. H., Thompson, N. L., Sporn, M. B. & Bissell, M. J. Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-β. Science 248, 1656–1660 (1990).

    Article  CAS  PubMed  Google Scholar 

  38. Mintz, B. & Silvers, W. K. Transgenic mouse model of malignant skin melanoma. Proc. Natl Acad. Sci. USA 90, 8817–8821 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barcellos-Hoff, M. H. & Ravani, S. A. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res. 60, 1254–1260 (2000).Radiation-induced mutation of the stromal microenvironment can contribute to neoplastic progression of epithelial cells in vivo , indicating that disruption of solid tissue interactions is a method by which ionizing radiation acts as a carcinogen.

    CAS  PubMed  Google Scholar 

  40. Ehrhart, E. J., Segarini, P., Tsang, M. L., Carroll, A. G. & Barcellos-Hoff, M. H. Latent transforming growth factor β1 activation in situ: quantitative and functional evidence after low-dose γ-irradiation. FASEB J. 11, 991–1002 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Moinfar, F. et al. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 60, 2562–2566 (2000).An examination of loss of heterozygosity (LOH) in microdissected mammary stromal and epithelial tissue samples. LOH at several loci was observed exclusively in stromal cells, indicating that genetic instability in the stroma can be a contributing factor to tumour progression.

    CAS  PubMed  Google Scholar 

  42. Jacoby, R. F. et al. A juvenile polyposis tumor suppressor locus at 10p11 is deleted from nonepithelial cells in the lamina propria. Gastroenterology 112, 1398–1403 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Howe, J. R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).Alterations in stromal function predispose colonic epithelial cells to carcinoma.

    Article  CAS  PubMed  Google Scholar 

  44. Thomasset, N. et al. Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am. J. Pathol. 153, 457–467 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tlsty, T. D. Stromal cells can contribute oncogenic signals. Semin. Cancer Biol. 11, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Vu, T. H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14, 2123–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Med. 5, 662–668 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Mitsiades, N., Yu, W., Poulaki, V., Tsokos, M. & Stamenkovic, I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61, 577–581 (2001).

    CAS  PubMed  Google Scholar 

  49. Yu, Q. & Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 14, 163–176 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137–146 (1999).Shows that sustained expression of stromelysin-1, a stromal enzyme that destroys the basement membrane, can lead to epithelial tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wright, J. et al. A switch from stromal to tumor cell expression of stromelysin-1 mRNA is associated with the conversion of squamous to spindle cell carcinomas during mouse skin tumor progression. Mol Carcinog 10, 207–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Boudreau, N., Sympson, C. J., Werb, Z. & Bissell, M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sympson, C. J. et al. Targeted expression of stromelysin-1 in mammary gland provides evidence for proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J. Cell Biol. 125, 681–693 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Witty, J. P., Wright, J. H. & Matrisian, L. M. Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol. Biol. Cell. 6, 1287–1303 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rudolph-Owen, L. A., Chan, R., Muller, W. J. & Matrisian, L. M. The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 58, 5500–5506 (1998).

    CAS  PubMed  Google Scholar 

  56. Boulay, A. et al. High cancer cell death in syngeneic tumors developed in host mice deficient for the stromelysin-3 matrix metalloproteinase. Cancer Res. 61, 2189–2193 (2001).

    CAS  PubMed  Google Scholar 

  57. Ha, H.-Y. et al. Overexpression of membrane-type matrix metalloproteinase-1 induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 61, 984–990 (2001).

    CAS  PubMed  Google Scholar 

  58. Kaplan, D. H. et al. Demonstration of an interferon-γ-dependent tumor surveillance system in immunocompromised mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakajima, C. et al. A role of interferon-γ (IFN-γ) in tumor immunity: T cells with the capacity to reject tumor cells are generated but fail to migrate to tumor sites in IFN-γ-deficient mice. Cancer Res. 61, 3399–3405 (2001).

    CAS  PubMed  Google Scholar 

  60. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Beatty, G. L. & Paterson, Y. IFN-γ-dependent inhibition of tumor angiogenesis by tumor angiogenesis of tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-γ. J. Immunol. 166, 2276–2282 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hanson, H. L. et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13, 265–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Griffith, T. S. et al. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J. Exp. Med. 189, 1343–1353 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smyth, M. J. et al. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon-γ-dependent natural killer cell protection from tumor metastasis. J. Exp. Med. 193, 661–670 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Maria, D. A. et al. Resistance to melanoma metastases in mice selected for high acute inflammatory response. Carcinogenesis 22, 337–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Beatty, G. L. & Paterson, Y. IFN-γ can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J. Immunol. 165, 5502–5508 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Gati, A. et al. Tumor cells regulate the lytic activity of tumor-specific cytotoxic T lymphocytes by modulating the inhibitory natural killer receptor function. Cancer Res. 61, 3240–3244 (2001).

    CAS  PubMed  Google Scholar 

  68. Ganss, R. and Hanahan, D. Tumor microenvironment can restrict the effectiveness of activated antitumor lymphocytes. Cancer Res. 58, 4673–4681 (1998).

    CAS  PubMed  Google Scholar 

  69. Wei, W. Z., Fulton, A., Winkelhake, J. and Heppner, G. Correlation of natural killer activity with tumorigenesis of a preneoplastic mouse mammary lesion. Cancer Res. 49, 2709–2715 (1989).

    CAS  PubMed  Google Scholar 

  70. Coussens, L. M. et al. Inflammatory mast cells upregulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).References 70 and 71 showed that mast cells secrete MMP-9 following infiltration of developing squamous epithelial tumours, and that this action stimulates both development of malignancy and subsequent angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bergers, B. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–739 (2001).Showed that macrophages potentiate neoplastic progression through paracrine factors, indicating that these factors are important to tumorigenesis as genetic mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang, K. C. et al. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-β. J. Immunol. 162, 5528–5535 (1999).

    CAS  PubMed  Google Scholar 

  75. Coussens, L. M., & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frank, B. T., Rossall, J. C., Caughey, G. H. & Fang, K. C. Mast cell tissue inhibitor of metalloproteinase-1 is cleaved and inactivated extracellularly by α-chymase. J. Immunol. 166, 2783–2792 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Mitchell, R. A. & Bucala, R. Tumor growth-promoting properties of macrophage migration inhibitory factor (MIF). Semin. Cancer Biol. 10, 359–366 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Abe, R., Peng, T., Sailors, J., Bucala, R. & Metz, C. N. Regulation of the CTL response by macrophage migration inhibitory factor. J. Immunol. 166, 747–753 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 190, 1375–1382 (1999).Macrophage inhibitory factor (MIF) suppress p53-dependent transcriptional activity and blocks senescence of primary mouse embryonic fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shao, C. et al. Chromosome instability contributes to loss of heterozygosity in mice lacking p53. Proc. Natl Acad. Sci. USA 97, 7405–7410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cordon-Cardo, C. & Prives, C. At the crossroads of inflammation and tumorigenesis. J. Exp. Med. 190, 1367–1370 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).Microscopic sectioning of uveal (ocular) tumours provided the first evidence that, in addition to directing the behaviour of stromal endothelium, tumours might also develop into functional channels capable of connencting to host vasculature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bissell, M. J. Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. Am. J. Pathol. 155, 675–679 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chang, Y. S. et al. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc. Natl Acad. Sci. USA 97, 14608–14613 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shirikawa, K. et al. Absence of endothelial cells, central necrosis, and fibrosis are associated with aggressive inflammatory breast cancer. Cancer Res. 61, 445–451 (2001).

    Google Scholar 

  86. Sood, A. K. et al. Molecular determinants of ovarian cancer plasticity. Am. J. Pathol. 158, 1279–1288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hendrix, M. J. C. et al. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc. Natl Acad. Sci. USA 98, 8018–8023 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Forberg, R., Hendrix, M. J. C. & Maniotis, A. J. Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol. 156, 361–381 (2000).

    Article  Google Scholar 

  89. Akashi, K., Reya, T., Dalma-Weiszhausz, D. & Weissman, I. L. Lympoid precursors. Curr. Opin. Immunol. 12, 144–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Khan, A. A., Bose, C., Yam, L. S., Soloski, M. J. & Rupp, F. Physiological regulation of the immunological synapse by agrin. Science 292, 1681–1686 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Yang, F.-C. et al. Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc. Natl Acad. Sci. USA 98, 5614–5618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dror, Y. & Freedman, M. H. Schwachman–Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood 94, 3048–3054 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Damiano, J. S., Cress, A. E., Hazelhurst, L. A., Shtil, A. A. & Dalton, W. S. Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93, 1658–1667 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Aziz, K. A., Till, K. J., Zuzel, M. & Cawley, J. C. Involvement of CD44–hyaluronan interaction in malignant cell homing and fibronectin synthesis in hairy cell leukemia. Blood 96, 3161–3167 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Børset, M., Hjertner, Ø., Yaccoby, S., Epstein, J. & Sanderson, R. D. Syndecan-1 is targeted to the uropods of polarized myeloma cells where it promotes adhesion and sequesters heparin-binding proteins. Blood 96, 2528–2536 (2000).

    Article  PubMed  Google Scholar 

  96. Barillé, S. et al. Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of pro-MMP-2, and induction of MMP-1 by myeloma cells. Blood 90, 1649–1655 (1997).

    Article  PubMed  Google Scholar 

  97. Kossakowska, A. E. et al. Interleukin-6 regulation of matrix-metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin's lymphomas. Blood 94, 2080–2089 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Michigami, T. et al. Cell–cell contact between marrow stromal cells and myeloma cells via VCAM-1 and α4β1-integrin enhances production of osteoclast-stimulating activity. Blood 96, 1953–1960 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Sanz-Rodríguez, F., Hidalgo, A. & Teixidó, J. Chemokine stromal cell-derived factor-1 α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97, 346–351 (2001).

    Article  PubMed  Google Scholar 

  100. Vacca, A. et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93, 3064–3073 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Padró, T. et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 95, 2637–2644 (2000).

    Article  PubMed  Google Scholar 

  102. Lagneaux, L., Delforge, A., Bron, D., De Bruyn, C. & Styckmans, P. Chronic lympocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells. Blood 91, 2387–2396 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Shain, K. H., Landowski, T. H. & Dalton, W. S. The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr. Opin. Oncol. 12, 557–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Mudry, R. E., Fortney, J. E., York, T., Hall, B. M. & Gibson, L. F. Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 96, 1926–1932 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Cheung, W.-C. & Van Ness, B. The bone marrow stromal microenvironment influences myeloma therapeutic response in vitro. Leukemia 15, 264–271 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Moreno, A. et al. Interleukin-6 dimers produced by endothelial cells inhibit apoptosis of B-chronic lymphocytic leukemia cells. Blood 97, 242–249 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Illmensee, K. & Mintz, B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl Acad. Sci. USA 73, 549–553 (1976).Malignant mouse teratocarcinoma cells, grown through 200 transplant generations over 8 years as in vivo ascites tumours, were microinjected into developing blastocysts. The resulting genetic mosaics were normal, and tumour cells were able to develop into normal tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309, 552–556 (1984).

    Article  CAS  PubMed  Google Scholar 

  109. Stoker, A. W., Hatier, C. & Bissell, M. J. The embryonic environment strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, but not in endothelia. J. Cell Biol. 111, 217–228 (1990).

    Article  CAS  PubMed  Google Scholar 

  110. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).A direct demonstration of the interdependence of the tumour epithelium and the tumour-associated stromal cells.

    CAS  PubMed  Google Scholar 

  111. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103, 745–755 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Javaherian, A., Vaccariello, M., Fusenig, N. E. & Garlick, J. A. Normal keratinocytes suppress early stages of neoplastic progression in stratified epithelium. Cancer Res. 58, 2200–2209 (1998).

    CAS  PubMed  Google Scholar 

  113. Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G. & Bissell, M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105, 223–235 (1989).

    Article  CAS  PubMed  Google Scholar 

  114. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R. & Bissell, M. J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl Acad. Sci. USA 89, 9064–9068 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997).Showed that progression to tumorigenicity in a mammary epithelial tumour-progression cell-culture model is accompanied by upregulation of β1-integrins, and that β1-blocking antibodies can restore normal phenotype and suppress tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, F. et al. Reciprocal interactions between β1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc. Natl Acad. Sci. USA 95, 14821–14826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, F., Yoneda, T., Barcellos-Hoff, M. H. & Bissell, M. J. Combinatorial modifications of multiple pathways reverts the malignant phenotype of mammary carcinoma cells MDA–MB231. Mol. Biol. Cell 10, 2024 (1999).

    Article  Google Scholar 

  118. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI-571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 344, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Friedman, S. L., Maher, J. J. & Bissell, D. M. Mechanisms and therapy of hepatic fibrosis. Hepatology 32, 1403–1408 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Bilimora, M. M. et al. Underlying liver disease, not tumor factors, predicts long-term survival after resection of hepatocellular carcinoma. Arch. Surg. 136, 528–535 (2001).

    Article  Google Scholar 

  122. Jacobs, T. W., Byrne, C., Colditz, G., Connolly, J. L. & Schnitt, S. J. Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N. Engl. J. Med. 340, 430–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Mossman, B. T. & Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med. 157, 1666–1680 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Sporn, M. B. The war on cancer. Lancet 347, 1377–1381 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Sporn, M. B. & Suh, N. Chemoprevention of cancer. Carcinogenesis 21, 525–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Bange, J., Zwick, E. & Ullrich, A. Molecular targets for breast cancer therapy and prevention. Nature Med. 7, 548–552 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of prostaglandin endoperoxide synthase-2 (COX2). Cell, 87, 803–809 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Tsujii, M. et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–716 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, C. H. et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J. Biol. Chem. 276, 18563–18569 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Williams, C. S., Tsujii, M., Reese, J., Dey, S. K. & DuBois, R. N. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest. 105, 1589–1594 (2000).Showed that the induction of angiogenesis depends upon COX2 expression within tumour-associated fibroblasts, rather than within the tumour itself.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Herbst, R. S., Lee, A. T., Tran, H. T. & Abbruzzese, J. L. Clinical studies of angiogenesis inhibitors: the University of Texas MD Anderson Center trial of human endostatin. Curr. Curr Oncol Rep 3, 131–140 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Zucker, S., Cao, J. & Chen, W.T. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene 19, 6642—6650 (2000).

  133. Hidalgo, H. & Eckhart, S. G. Development of matrix metalloproteinase inhibitors in cancer therapy. J. Natl Cancer Inst. 93, 178–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Reichmann, E. Oncogenes and epithelial cell transformation. Semin. Cancer Biol. 5, 157–165 (1994).

    CAS  PubMed  Google Scholar 

  135. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).A genetic screen to identify proteins that mediate epithelial polarity in Drosophila identified a network of two known tumour suppressors and a new gene that are involved in the assembly and maintenance of gap junctions.

    Article  CAS  PubMed  Google Scholar 

  136. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  PubMed  Google Scholar 

  137. Borg, J. P. et al. ERBIN: a basolateral PDZ protein that interacts with the mammalian ERBB2/HER2 receptor. Nature Cell Biol. 2, 407–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Singer, A. J. and Clark, R. A. Cutaneous wound healing. N. Engl. J. Med. 341, 738–746 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Dvorak, H. F. Tumors: wounds that do not heal. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  140. Skobe, M. & Fusenig, N. E. Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl Acad. Sci. USA. 95, 1050–1055 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  142. Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E. & Bissell, M. J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95, 859–873 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Okamoto-Inoue, M., Kamada, S., Kimura, G. & Taniguchi, S. The induction of smooth muscle α-actin in a transformed rat cell line suppresses malignant properties in vitro and in vivo. Cancer Lett. 142, 173–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Zajchowski, D. A. et al. Suppression of tumor-forming ability and related traits in MCF-7 human breast cancer cells by fusion with immortal mammary epithelial cells. Proc. Natl Acad. Sci. USA 87, 2314–2318 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sager, R., Anisoxicz, A., Neveu, M., Liang, P. & Sotiropoulou, G. Identification by differential display of α6-integrin as a candidate tumor suppressor gene. FASEB J. 7, 964–970 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B. & Schnitzer, J. E. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16, 1391–1397 (1998).

    Article  CAS  PubMed  Google Scholar 

  147. Hirshi, K. K., Xu, C., Tsukamoto, T. & Sager, R. Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Differ. 7, 861–870 (1996).

    Google Scholar 

  148. Zou, Z. et al. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 263, 526–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  149. Bani, D., Riva, A., Bigazzi, M. & Sacchi, B. T. Differentiation of breast cancer cells in vitro is promoted by the concurrent influence of myoepithelial cells and relaxin. Br. J. Cancer 70, 900–904 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu, Q. Y. et al. Inhibitory effects of activin on the growth and morphogenesis of primary and transformed mammary epithelial cells. Cancer Res. 56, 1155–1163 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research performed in the laboratory of M.J.B. and summarized in this review was supported by the United States Department of Energy (DOE), the Office of Biological and Environmental Research, and by the NCI. D.R. was supported by a Distinguished Hollaender Postdoctoral Fellowship from the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina J. Bissell.

Related links

Related links

DATABASES

CancerNet

bladder carcinoma

breast cancer

cervical carcinoma

colon cancer

hepatocellular carcinoma

squamous cell carcinomas

 LocusLink

ABL

BCR

E-cadherin

α-catenin

β-catenin

COX2

Cx32

Cx43

EGFR

HER2

IFN-γ

β1-integrin

MIF

MMPs

MMP-7

MMP-11

MT1-MMP

stromelysin-1

TGF-β

 Medscape DrugInfo

herceptin

STI-571

 OMIM

Shwachman–Diamond syndrome

FURTHER INFORMATION

Biology of the mammary gland

Mina Bissell's lab

Glossary

ORGAN

An anatomically discrete collection of tissues, integrated to perform specific functions.

TISSUE

A relatively homogenous structure, composed of an organized collection of cells of similar morphology and function.

EXTRACELLULAR MATRIX

(ECM). A complex, three-dimensional network of very large macromolecules that provides contextual information and an architectural scaffold for cellular adhesion and migration.

STROMA

Organ compartment serving as the connective tissue framework; includes fibroblasts, immune defence cells and fat cells.

EPITHELIUM

A diverse group of tissues that covers or lines nearly all body surfaces, cavities and tubes, functioning as interfaces between different biological compartments. Epithelial layers provide physical protection and containment, and also mediate organ-specific transport properties.

BASEMENT MEMBRANE

A specialized form of ECM that consists of laminins, collagen IV, nidogen (entactin), proteoglycans and a number of other glycoproteins that separates epithelia from underlying supporting tissues. Different organs have different compositions of basement membrane.

ADHERENS JUNCTION

A physical junction that links apicolaterally localized belts of actin in adjacent epithelial cells.

GAP JUNCTION

An aqueous channel that interconnects the cytoplasms of adjacent cells and allows direct exchange of small cytoplasmic components. It is created by the association of two hemichannels, each a hexamer of connexin subunits.

TIGHT JUNCTION

A component of cell–cell adhesion in epithelial and endothelial cell sheets. Acts as a mediator of the diffusion of solutes through the intercellular space. Also acts as a boundary between the apical and basal plasma-membrane domains.

DESMOSOME

An adhesive junction that anchors intermediate filaments between adjoining cells.

E-CADHERIN

The main adhesion receptor in adherens junctions. Mediates Ca2+-dependent interactions between adjacent epithelial cells and regulates cell proliferation. It also sequesters the transcriptional co-activator β-catenin, a protein that can stimulate cell-cycle entry. The loss of E-cadherin from the cell surface might trigger epithelial–mesenchymal transition.

EPITHELIAL–MESENCHYMAL TRANSITION

Conversion from an epithelial to a mesenchymal phenotype, which is a normal component of embryonic development. In carcinomas, this transformation results in altered cell morphology, the expression of mesenchymal proteins and increased invasiveness.

CONNEXIN

Functions as a subunit of the gap junction hemichannel. Several members of the connexin family have been identified.

INTERSTITIAL MATRIX

The extracellular matrix (ECM) contained within the stroma.

INTERMEDIATE FILAMENT

A component of the eukaryotic cytoskeleton. Intermediate filaments form a dense network extending from the nucleus to the plasma membrane.

TERATOCARCINOMA

A malignant germ-cell tumour arising from the ovary or testis that is composed of embryonal carcinoma cells.

INTEGRINS

A family of more than 20 heterodimeric cell-surface extracellular matrix (ECM) receptors. They connect the structure of the ECM with the cytoskeleton and can transmit signalling information bidirectionally.

HEPATIC STELLATE CELLS

The principal fibrogenic cell type of the liver. They are located in a perivascular orientation and contain long cytoplasmic processes that interact with neighbouring cells.

HEMIDESMOSOME

An adhesion complex located at the interface of epithelial cells with the basement membranes. Responsible for linking keratin intermediate filaments to components of the extra-cellular matrix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bissell, M., Radisky, D. Putting tumours in context. Nat Rev Cancer 1, 46–54 (2001). https://doi.org/10.1038/35094059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35094059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing