Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Positive and negative regulation of t-cell activation by adaptor proteins

Key Points

  • Adaptor proteins are as crucial as receptors and effectors as regulators of lymphocyte activation.

  • Adaptors serve as positive or negative regulators by nucleating intermolecular complexes and modulating effector protein activity.

  • Techniques to study the biology of adaptors involve genetic manipulation of cell lines and animals, biochemical assessment of intermolecular interactions, and imaging of the temporal and spatial organization of signalling complexes.

  • Adaptor domains within effector molecules may have vital roles for function. For example, SRC family kinases are regulated both by post-translational modifications (e.g. phosphorylation) and by intramolecular interactions mediated by SH2 and SH3 domains.

  • Adaptors may function cooperatively in signalling pathways (e.g. SLP76 and LAT).

  • Subcellular localization of adaptors is key to their function.

Abstract

Adaptor proteins, molecules that mediate intermolecular interactions, are now known to be as crucial for lymphocyte activation as are receptors and effectors. Extensive work from numerous laboratories has identified and characterized many of these adaptors, demonstrating their roles as both positive and negative regulators. Studies into the molecular basis for the actions of these molecules shows that they function in various ways, including: recruitment of positive or negative regulators into signalling networks, modulation of effector function by allosteric regulation of enzymatic activity, and by targeting other proteins for degradation. This review will focus on a number of adaptors that are important for lymphocyte function and emphasize the various ways in which these proteins carry out their essential roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Positive regulation of TCR signalling by adaptor proteins.
Figure 2: Negative regulation of TCR signalling by adaptors.

Similar content being viewed by others

References

  1. Straus, D. B. & Weiss, A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70, 585–593 (1992).

    CAS  PubMed  Google Scholar 

  2. June, C. H., Fletcher, M. C., Ledbetter, J. A. & Samelson, L. E. Increases in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol. 144, 1591–1599 (1990).

    CAS  PubMed  Google Scholar 

  3. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    CAS  PubMed  Google Scholar 

  4. Chan, A. C., Irving, B. A., Fraser, J. D. & Weiss, A. The ζ chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. Proc. Natl Acad. Sci. USA 88, 9166–9170 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    CAS  PubMed  Google Scholar 

  6. Iwashima, M., Irving, B. A., van Oers, N. S., Chan, A. C. & Weiss, A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136–1139 (1994).

    CAS  PubMed  Google Scholar 

  7. Jackman, J. K. et al. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J. Biol. Chem. 270, 7029–7032 (1995).

    CAS  PubMed  Google Scholar 

  8. Motto, D. G., Ross, S. E., Wu, J., Hendricks-Taylor, L. R. & Koretzky, G. A. Implication of the GRB2-associated phosphoprotein SLP-76 in T cell receptor-mediated interleukin 2 production. J. Exp. Med. 183, 1937–1943 (1996).

    CAS  PubMed  Google Scholar 

  9. Yablonski, D., Kuhne, M. R., Kadlecek, T. & Weiss, A. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281, 413–416 (1998).

    CAS  PubMed  Google Scholar 

  10. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    CAS  PubMed  Google Scholar 

  11. Clements, J. L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).References 10 and 11 describe mice with targeted disruption of the Slp76 gene. These mice have a complete block in thymocyte development, presumably due to impaired signalling through the pre-TCR, emphasizing the vital role played by SLP76 as a positive regulator of T-cell function.

    CAS  PubMed  Google Scholar 

  12. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    CAS  PubMed  Google Scholar 

  13. Zhang, W., Irvin, B. J., Trible, R. P., Abraham, R. T. & Samelson, L. E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol. 11, 943–950 (1999).

    CAS  PubMed  Google Scholar 

  14. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    CAS  PubMed  Google Scholar 

  15. Lin, J., Weiss, A. & Finco, T. S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274, 28861–28864 (1999).

    CAS  PubMed  Google Scholar 

  16. Liu, S. K., Fang, N., Koretzky, G. A. & McGlade, C. J. The hematopoietic-specific adaptor protein Gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    CAS  PubMed  Google Scholar 

  17. Asada, H. et al. Grf40, a novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med. 189, 1383–1390 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem. 275, 23355–23361 (2000).

    CAS  PubMed  Google Scholar 

  19. Law, C. L. et al. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J. Exp. Med. 189, 1243–1253 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).Similar to Slp76 -deficient animals, Lat−/− mice exhibit a complete arrest at the pro-T3 stage of thymocyte development. This result and studies in mutant variants of the Jurkat T-cell line indicate that Slp76 and LAT might function together as regulators of TCR signalling events.

    CAS  PubMed  Google Scholar 

  21. Cheng, A. M. & Chan, A. C. Protein tyrosine kinases in thymocyte development. Curr. Opin. Immunol. 9, 528–533 (1997).

    CAS  PubMed  Google Scholar 

  22. van Oers, N. S. T cell receptor-mediated signs and signals governing T cell development. Semin. Immunol. 11, 227–237 (1999).

    CAS  PubMed  Google Scholar 

  23. Kruisbeek, A. M. et al. Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol. Today 21, 637–644 (2000).

    CAS  PubMed  Google Scholar 

  24. Finco, T. S., Kadlecek, T., Zhang, W., Samelson, L. E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    CAS  PubMed  Google Scholar 

  25. Boerth, N. J. et al. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J. Exp. Med. 192, 1047–1058 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Williams, B. L. et al. Phosphorylation of Tyr319 in ZAP-70 is required for T-cell antigen receptor-dependent phospholipase C-γ1 and Ras activation. EMBO J. 18, 1832–1844 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin, J. & Weiss, A. Identification of the minimal tyrosine residues required for LAT function. J. Biol. Chem. 276, 29588–29595 (2001).

    CAS  PubMed  Google Scholar 

  28. Yablonski, D., Kadlecek, T. & Weiss, A. Identification of a phospholipase c-γ1 (Plc-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol. 21, 4208–4218 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science 291, 1987–1991 (2001).Describes mice made deficient in Gads. Unlike Slp76−/− or Lat−/− mice, thymocyte development is normal in Gads-deficient animals and mature T cells populate the periphery, but severe defects in thymocyte selection and function of the mature T cells which develop.

    CAS  PubMed  Google Scholar 

  30. Kikuchi, K. et al. Suppression of thymic development by the dominant-negative form of Gads. Int. Immunol. 13, 777–783 (2001).

    CAS  PubMed  Google Scholar 

  31. Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat. Immunol. 2, 29–36 (2001).

    CAS  PubMed  Google Scholar 

  32. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  33. Shan, X. et al. Deficiency of PTEN in Jurkat T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation. Mol. Cell. Biol. 20, 6945–6957 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fang, N. & Koretzky, G. A. SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity. J. Biol. Chem. 274, 16206–16212 (1999).

    CAS  PubMed  Google Scholar 

  35. Raab, M., da Silva, A. J., Findell, P. R. & Rudd, C. E. Regulation of Vav–SLP-76 binding by ZAP-70 and its relevance to TCR ζ/CD3 induction of interleukin-2. Immunity 6, 155–164 (1997).

    CAS  PubMed  Google Scholar 

  36. Bubeck Wardenburg, J. et al. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 9, 607–616 (1998).

    CAS  PubMed  Google Scholar 

  37. Bokoch, G. M. et al. Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem. 271, 25746–25749 (1996).

    CAS  PubMed  Google Scholar 

  38. Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y. & Schlessinger, J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 271, 20997–21000 (1996).

    CAS  PubMed  Google Scholar 

  39. Lu, W., Katz, S., Gupta, R. & Mayer, B. J. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7, 85–94 (1997).

    CAS  PubMed  Google Scholar 

  40. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    CAS  PubMed  Google Scholar 

  41. Ku, G. M., Yablonski, D., Manser, E., Lim, L. & Weiss, A. A PAK1–PIX–PKL complex is activated by the T-cell receptor independent of Nck, Slp-76 and LAT. EMBO J. 20, 457–465 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bunnell, S. C., Kapoor, V., Trible, R. P., Zhang, W. & Samelson, L. E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).Using real-time imaging, this paper shows that, unlike wild-type Jurkat cells, LAT -deficient Jurkat cells fail to spread on anti-TCR-coated coverslips. Reconstitution of LAT expression rescues this signalling defect; however, the structural features of LAT required for this function and the precise signalling pathways required remain to be determined.

    CAS  PubMed  Google Scholar 

  43. Borroto, A. et al. Rho regulates T cell receptor ITAM-induced lymphocyte spreading in an integrin-independent manner. Eur. J. Immunol. 30, 3403–3410 (2000).

    CAS  PubMed  Google Scholar 

  44. Kraynov, V. S. et al. Localized Rac activation dynamics visualized in living cells. Science 290, 333–337 (2000).Highlights the use of a method based on FRET modified to examine the spatio-temporal pattern of RAC1 activation in living cells.

    CAS  PubMed  Google Scholar 

  45. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    CAS  PubMed  Google Scholar 

  46. Kang, P. J., Sanson, A., Lee, B. & Park, H. O. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 292, 1376–1378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marston, A. L., Chen, T., Yang, M. C., Belhumeur, P. & Chant, J. A localized GTPase exchange factor, Bud5, determines the orientation of division axes in yeast. Curr. Biol. 11, 803–807 (2001).

    CAS  PubMed  Google Scholar 

  48. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    CAS  PubMed  Google Scholar 

  49. Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105, 115–126 (2001).Uses a combination of genetic and simulated crystallographic studies to show a unique role for the region linking the SH3 and SH2 domains of c-SRC and HCK.

    CAS  PubMed  Google Scholar 

  50. Schmedt, C. et al. Csk controls antigen receptor-mediated development and selection of T-lineage cells. Nature 394, 901–904 (1998).

    CAS  PubMed  Google Scholar 

  51. Chow, L. M., Fournel, M., Davidson, D. & Veillette, A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature 365, 156–160 (1993).

    CAS  PubMed  Google Scholar 

  52. Koretzky, G. A., Picus, J., Thomas, M. L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66–68 (1990).

    CAS  PubMed  Google Scholar 

  53. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    CAS  PubMed  Google Scholar 

  54. Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).References 53 and 54 describe the initial characterization of PAG/CBP, indicating its localization in lipid rafts and its association with CSK. These papers provide evidence for how an adaptor protein might regulate an enzyme by directing its subcellular localization.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    CAS  PubMed  Google Scholar 

  56. Takeuchi, S., Takayama, Y., Ogawa, A., Tamura, K. & Okada, M. Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J. Biol. Chem. 275, 29183–29186 (2000).

    CAS  PubMed  Google Scholar 

  57. Meng, W., Sawasdikosol, S., Burakoff, S. J. & Eck, M. J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP70 kinase. Nature 398, 84–90 (1999).

    CAS  PubMed  Google Scholar 

  58. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999)This study shows a function for c-Cbl as an E3 ubiquitin-protein ligase with direct in vitro evidence of a role for the TKB and RING domains.

    CAS  PubMed  Google Scholar 

  59. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).

    CAS  PubMed  Google Scholar 

  60. Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616–3628 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miyake, S., Lupher, M. L. Jr, Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc. Natl Acad. Sci. USA 95, 7927–7932 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem. 274, 22151–22154 (1999).

    CAS  PubMed  Google Scholar 

  63. Lupher, M. L. Jr et al. Cbl-mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine-binding domain binding to Syk phosphotyrosine 323. J. Biol. Chem. 273, 35273–35281 (1998).

    CAS  PubMed  Google Scholar 

  64. Lupher, M. L. Jr, Reedquist, K. A., Miyake, S., Langdon, W. Y. & Band, H. A novel phosphotyrosine-binding domain in the N-terminal transforming region of Cbl interacts directly and selectively with ZAP-70 in T cells. J. Biol. Chem. 271, 24063–24068 (1996).

    CAS  PubMed  Google Scholar 

  65. Lupher, M. L. Jr, Songyang, Z., Shoelson, S. E., Cantley, L. C. & Band, H. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J. Biol. Chem. 272, 33140–33144 (1997).

    CAS  PubMed  Google Scholar 

  66. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Thien, C. B., Bowtell, D. D. & Langdon, W. Y. Perturbed regulation of ZAP-70 and sustained tyrosine phosphorylation of LAT and SLP76 in c-Cbl-deficient thymocytes. J. Immunol. 162, 7133–7139 (1999).

    CAS  PubMed  Google Scholar 

  68. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    CAS  PubMed  Google Scholar 

  69. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).References 68 and 69 describe that Cbl-b−/− mice develop spontaneous autoimmunity after 6 months of age characterized by autoantibody production and generalized lymphocytic infiltration into multiple tissues.

    CAS  PubMed  Google Scholar 

  70. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  71. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    CAS  PubMed  Google Scholar 

  72. Machesky, L. M. Putting on the brakes: a negative regulatory function for Ena/VASP proteins in cell migration. Cell 101, 685–688 (2000).

    CAS  PubMed  Google Scholar 

  73. Gertler, F. B., Doctor, J. S. & Hoffmann, F. M. Genetic suppression of mutations in the Drosophila abl proto-oncogene homolog. Science 248, 857–860 (1990).

    CAS  PubMed  Google Scholar 

  74. Halbrugge, M. & Walter, U. Analysis, purification and properties of a 50,000-dalton membrane-associated phosphoprotein from human platelets. J. Chromatogr. 521, 335–343 (1990).

    CAS  PubMed  Google Scholar 

  75. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    CAS  PubMed  Google Scholar 

  76. Niebuhr, K. et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the ENA/VASP family. EMBO J. 16, 5433–5444 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Carl, U. D. et al. Aromatic and basic residues within the EVH1 domain of VASP specify its interaction with proline-rich ligands. Curr. Biol. 9, 715–718 (1999).

    CAS  PubMed  Google Scholar 

  78. Huttelmaier, S. et al. Characterization of the actin binding properties of the vasodilator-stimulated phosphoprotein VASP. FEBS Lett. 451, 68–74 (1999).

    CAS  PubMed  Google Scholar 

  79. Bachmann, C., Fischer, L., Walter, U. & Reinhard, M. The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation. J. Biol. Chem. 274, 23549–23557 (1999).

    CAS  PubMed  Google Scholar 

  80. Chakraborty, T. et al. A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells. EMBO J. 14, 1314–1321 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Laurent, V. et al. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144, 1245–1258 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    CAS  PubMed  Google Scholar 

  83. Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol. 1, 321–322 (1999).

    CAS  PubMed  Google Scholar 

  84. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    CAS  PubMed  Google Scholar 

  85. Bear, J. E. et al. Negative regulation of fibroblast motility by ENA/VASP proteins. Cell 101, 717–728 (2000).

    CAS  PubMed  Google Scholar 

  86. Wu, J. Y. et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature 410, 948–952 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Musci, M. A. et al. Molecular cloning of SLAP130, an SLP76-associated substrate of the T cell antigen receptor-stimulated protein tyrosine kinases. J. Biol. Chem. 272, 11674–11677 (1997).

    CAS  PubMed  Google Scholar 

  88. da Silva, A. J. et al. Cloning of a novel T-cell protein FYB that binds FYN and SH2-domain-containing leukocyte protein 76 and modulates interleukin 2 production. Proc. Natl Acad. Sci. USA 94, 7493–7498 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Krause, M. et al. Fyn-binding protein (Fyb)/SLP-76-associated protein (SLAP), ENA/vasodilator-stimulated phosphoprotein (VASP) proteins and the ARP2/3 complex link T cell receptor (TCR) signaling to the actin cytoskeleton. J. Cell Biol. 149, 181–194 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Obergfell, A. et al. The molecular adapter SLP-76 relays signals from platelet integrin αIIbβ3 to the actin cytoskeleton. J. Biol. Chem. 276, 5916–5923 (2001).

    CAS  PubMed  Google Scholar 

  91. Fedorov, A. A., Fedorov, E., Gertler, F. & Almo, S. C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nature Struct. Biol. 6, 661–665 (1999).

    CAS  PubMed  Google Scholar 

  92. Prehoda, K. E., Lee, D. J. & Lim, W. A. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471–480 (1999).

    CAS  PubMed  Google Scholar 

  93. Pivniouk, V. I. et al. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J. Clin. Invest. 103, 1737–1743 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Clements, J. L. et al. Fetal hemorrhage and platelet dysfunction in Slp-76-deficient mice. J. Clin. Invest. 103, 19–25 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Saitoh, S. et al. LAT is essential for FcɛRI-mediated mast cell activation. Immunity 12, 525–535 (2000).

    CAS  PubMed  Google Scholar 

  96. Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in Blink/Slp-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    CAS  PubMed  Google Scholar 

  97. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    CAS  PubMed  Google Scholar 

  98. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    CAS  PubMed  Google Scholar 

  99. Peterson E. J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    CAS  PubMed  Google Scholar 

  100. Griffiths, E. K. et al. Regulation of T cell activation and intregrin adhesion adapter Fyb/Slap. Science 293, 2260–2263 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Koretzky.

Related links

Related links

DATABASES

LocusLink

c-Cbl

CD3

CD28

CD45

CDC42

CSK

Enb

EVL

FYB

FYN

GADS

GAL4

GRB2

Il2

IRSp53

ITK

LAT

LCK

Mena

NCK

NFAT

PAG

PAK1

PLCγ1

PTEN

RAC1

RAP1

Robo

SDF1

SLIT3

SLP76

UBCH7

VASP

VAV1

Vav2

vinculin

WASP

WAVE

ZAP70

zyxin

FURTHER INFORMATION

Gary Koretzky's lab

Glossary

ADAPTOR MOLECULES

Molecules that lack any known intrinsic enzymatic, DNA binding or receptor functions, but mediate protein–protein or protein–lipid interactions. Most function as flexible molecular scaffolds by regulating the spatio-temporal dynamics of specific effector molecules.

PROTEIN TYROSINE KINASES

(PTKs). Enzymes that catalyse the phosphorylation of proteins on tyrosine residues within the context of specific peptide motifs. PTKs can be generally categorized as either receptor PTKs or as cytosolic PTKs (e.g. ZAP70).

IMMUNORECEPTOR TYROSINE-BASED ACTIVATION MOTIFS

(ITAMs). Regions found within the CD3 chains of the TCR and other immunoreceptors characterized by tyrosine and leucine or isoleucine residues with discrete spacing. Following receptor engagement, the tyrosines are inducibly phosphorylated and become docking sites for SH2 domain containing proteins including SYK-family protein tyrosine kinases.

JURKAT T CELL

Human leukaemic T-cell line used to study several aspects of T-cell biology and signalling — in particular, signal-transduction events initiated by the TCR.

LIPID RAFTS

Micro-aggregates of cholesterol and sphingomyelin thought to occur in the plasma membrane. Also described as glycolipid-enriched membrane microdomains (GEMs) or detergent-insoluble glycosphingolipid-enriched membrane microdomains (DIGs).

GUANINE NUCLEOTIDE-EXCHANGE FACTOR

(GEF). Proteins that activate low-molecular-mass GTPases, such as RHO-family GTPases and RAS by stimulating the dissociation of GDP, and therefore promoting formation of the active GTP-bound state of these GTPases.

LAMELLIPODIA

Thin sheet-like processes, which extend at the leading edge of moving cells or neuronal growth cones in an actin-dependent fashion; promoted by the RHO-family GTPase, RAC1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koretzky, G., Myung, P. Positive and negative regulation of t-cell activation by adaptor proteins. Nat Rev Immunol 1, 95–107 (2001). https://doi.org/10.1038/35100523

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35100523

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing