Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion conduction pore is conserved among potassium channels

Abstract

Potassium channels, a group of specialized membrane proteins, enable K+ ions to flow selectively across cell membranes. Transmembrane K+ currents underlie electrical signalling in neurons and other excitable cells. The atomic structure of a bacterial K+ channel pore has been solved by means of X-ray crystallography. To the extent that the prokaryotic pore is representative of other K+ channels, this landmark achievement has profound implications for our general understanding of K+ channels. But serious doubts have been raised concerning whether the prokaryotic K+ channel pore does actually represent those of eukaryotes. Here we have addressed this fundamental issue by substituting the prokaryotic pore into eukaryotic voltage-gated and inward-rectifier K+ channels. The resulting chimaeras retain the respective functional hallmarks of the eukaryotic channels, which indicates that the ion conduction pore is indeed conserved among K+ channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Replacement of the Shaker pore module with that of KcsA.
Figure 2: Triple mutation in the P-loop renders KcsA–Shaker channels sensitive to AgTx2.
Figure 3: Effects of extracellular K+ concentration and a G104A mutation on the gating of KcsA–Shaker.
Figure 4: Deletion of a segment in the P-loop of the IRK1 channel.
Figure 5: Substitution of the KcsA pore in IRK1.
Figure 6: Mutation T107D renders KcsA–Shaker inwardly rectifying.

Similar content being viewed by others

References

  1. Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N. & Jan, L. Y. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237, 770–775 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Pongs, O. et al. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 7, 1087–1096 (1988).

    Article  CAS  Google Scholar 

  3. Kamb, A., Tseng-Crank, J. & Tanouye, M. A. Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1, 421–430 (1988).

    Article  CAS  Google Scholar 

  4. Ho, K. et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362, 31–38 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Kubo, Y., Baldwin, T. J., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Schrempf, H. et al. A prokaryotic potassium ion channel with two predicted transmembrane segments from Streptomyces lividans. EMBO J. 14, 5170–5178 (1995).

    Article  CAS  Google Scholar 

  8. Minor, D. L. J., Masseling, S. J., Jan, Y. N. & Jan, L. Y. Transmembrane structure of an inwardly rectifying potassium channel. Cell 96, 879–891 (1999).

    Article  CAS  Google Scholar 

  9. del Camino, D., Holmgren, M., Liu, Y. & Yellen, G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403, 321–325 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Li-Smerin, Y., Hackos, D. H. & Swartz, K. J. A localized interaction surface for voltage- sensing domains on the pore domain of a K+ channel. Neuron 25, 411–423 (2000).

    Article  CAS  Google Scholar 

  12. Schoppa, N. E., McCormack, K., Tanouye, M. A. & Sigworth, F. J. The size of gating charge in wild-type and mutant Shaker potassium channels. Science 255, 1712–1715 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Garcia, M. L., Garcia-Calvo, M., Hidalgo, P., Lee, A. & MacKinnon, R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom. Biochemistry 33, 6834–6839 (1994).

    CAS  Google Scholar 

  14. MacKinnon, R., Cohen, S. L., Kuo, A., Lee, A. & Chait, B. T. Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280, 106–109 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Hackos, D. H. & Swartz, K. J. Disrupting the cytoplasmic gate in the Shaker K+ channel with mutations in S6. Biophys. J. 80, 182a–183a (2001).

    Google Scholar 

  16. Pardo, L. A. et al. Extracellular K+ specifically modulates a rat brain K+ channel. Proc. Natl Acad. Sci. USA 89, 2466–2470 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron 7, 547–556 (1991).

    Article  CAS  Google Scholar 

  18. Lopez-Barneo, J., Hoshi, T., Heinemann, S. H. & Aldrich, R. W. Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Recept. Channels 1, 61–71 (1993).

    CAS  PubMed  Google Scholar 

  19. Yellen, G., Sodickson, D., Chen, T. Y. & Jurman, M. E. An engineered cysteine in the external mouth of a K+ channel allows inactivation to be modulated by metal binding. Biophys. J. 66, 1068–1075 (1994).

    Article  CAS  Google Scholar 

  20. Heginbotham, L., LeMasurier, M., Kolmakova-Partensky, L. & Miller, C. Single Streptomyces lividans K+ channels: Functional asymmetries and sidedness of proton activation. J. Gen. Physiol. 114, 551–560 (1999).

    Article  CAS  Google Scholar 

  21. Stanfield, P. R. et al. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. J. Physiol. (Lond.) 478, 1–6 (1994).

    Article  CAS  Google Scholar 

  22. Lopatin, A. N., Makhina, E. N. & Nichols, C. G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Ficker, E., Taglialatela, M., Wible, B. A., Henley, C. M. & Brown, A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266, 1068–1072 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Fakler, B. et al. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80, 149–154 (1995).

    Article  CAS  Google Scholar 

  25. Yang, J., Jan, Y. N. & Jan, L. Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047–1054 (1995).

    Article  CAS  Google Scholar 

  26. Lu, Z. & MacKinnon, R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371, 243–246 (1994).

    Article  ADS  CAS  Google Scholar 

  27. Wible, B. A., Taglialatela, M., Ficker, E. & Brown, A. M. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature 371, 246–249 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Dascal, N. et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl Acad. Sci. USA 90, 10235–10239 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+ channel proteins. Nature 374, 135–141 (1995).

    Article  ADS  CAS  Google Scholar 

  31. Bond, C. T. et al. Cloning and expression of a family of inward rectifier potassium channels. Recept. Channels 2, 183–191 (1994).

    CAS  PubMed  Google Scholar 

  32. Perozo, E., Cortes, D. M. & Cuello, L. G. Structural rearrangements underlying K+-channel activation gating. Science 285, 73–78 (1999).

    Article  CAS  Google Scholar 

  33. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  ADS  CAS  Google Scholar 

  34. Lu, Z. & MacKinnon, R. Purification, characterization, and synthesis of an inward-rectifier K+ channel inhibitor from scorpion venom. Biochemistry 36, 6936–6940 (1997).

    Article  CAS  Google Scholar 

  35. Taglialatela, M., Ficker, E., Wible, B. A. & Brown, A. M. C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO J. 14, 5532–5541 (1995).

    Article  CAS  Google Scholar 

  36. Li-Smerin, Y. & Swartz, K. J. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl Acad. Sci. USA 95, 8585–8589 (1998).

    Article  ADS  CAS  Google Scholar 

  37. Liman, E. R., Hess, P., Weaver, F. & Korean, G. Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353, 752–756 (1991).

    Article  ADS  CAS  Google Scholar 

  38. Papazian, D. M., Timpe, L. C., Jan, Y. N. & Jan, L. Y. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305–310 (1991).

    Article  ADS  CAS  Google Scholar 

  39. Aggarwal, S. K. & MacKinnon, R. Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16, 1169–1177 (1996).

    Article  CAS  Google Scholar 

  40. Seoh, S.-A., Sigg, D., Papazian, D. M. & Benzanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159–1167 (1996).

    Article  CAS  Google Scholar 

  41. Yang, N., George, A. L. J. & Horn, R. Molecular basis of charge movement in voltage-gated sodium channels. Neuron 16, 113–122 (1996).

    Article  Google Scholar 

  42. Larsson, H. P., Baker, O. S., Dhillon, D. S. & Isacoff, E. Y. Transmembrane movement of the shaker K+ channel S4. Neuron 16, 387–397 (1996).

    Article  CAS  Google Scholar 

  43. Armstrong, C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. Gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  44. Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).

    Article  Google Scholar 

  45. Caprini, M. et al. Structural compatibility between the putative voltage sensor of voltage-gated K+ channels and the prokaryotic KcsA channel. J. Biol. Chem. 276, 21070–21076 (2001).

    Article  CAS  Google Scholar 

  46. VanDongen, A. M. J., Frech, G. C., Drewe, J. A., Joho, R. H. & Brown, A. M. Alteration and restoration of K+ channel function by deletions at the N- and C-termini. Neuron 5, 433–443 (1990).

    Article  CAS  Google Scholar 

  47. Chen, G.-Q., Cui, C., Mayer, M. L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).

    Article  ADS  CAS  Google Scholar 

  48. Spassova, M. & Lu, Z. Coupled ion movement underlies rectification in an inward-rectifier K+ channel. J. Gen. Physiol. 112, 211–221 (1998).

    Article  CAS  Google Scholar 

  49. Guo, D. & Lu, Z. Pore block versus intrinsic gating in the mechanism of inward rectification in the strongly-rectifying IRK1 channel. J. Gen. Physiol. 116, 561–568 (2000).

    Article  CAS  Google Scholar 

  50. Butler, A., Wei, A., Baker, K. & Salkoff, L. A family of putative potassium channel genes in Drosophila. Science 243, 943–947 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. De Weer for review and discussion of our manuscript; C. M. Armstrong, R. MacKinnon and K. J. Swartz for discussions and suggestions; R. MacKinnon and E. Perozo for KcsA cDNA; K. J. Swartz for Shaker-IR cDNA subcloned in the pGEM–HESS vector; L. Y. Jan for IRK1 cDNA; and J. Yang for IRK1 cDNA subcloned in the pGEM–HESS vector. This study was supported by the National Institute of General Medical Sciences. Z.L. is the recipient of an Independent Scientist Award from the National Heart, Lung and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Klem, A. & Ramu, Y. Ion conduction pore is conserved among potassium channels. Nature 413, 809–813 (2001). https://doi.org/10.1038/35101535

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35101535

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing