Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Localization and translation of mRNA in dentrites and axons

Key Points

  • Messenger RNAs and the structures needed for protein translation have been found in neuronal dendrites and axons. This article reviews the possible mechanisms for mRNA localization in neuronal processes, and the evidence for their translation, as well as the regulation and possible functional implications of dendritic translation.

  • Dendrites contain the structural machinery needed for protein translation. They also contain mRNAs, which can be amplified, identified and quantified. Different dendrites of a single neuron can contain different mRNAs, or the same mRNAs at different abundances. These mRNAs include those coding for neurotransmitter receptors, kinases and transcription factors.

  • Specific mRNAs are actively transported to the dendrites, and this transport can be altered by neuronal stimulation. It is unclear how mRNAs are targeted to dendrites, but there is evidence implicating the 3′- and 5′-untranslated regions of mRNAs in this process. RNA-binding proteins might be important for mRNA localization.

  • Translation of mRNAs into proteins occurs in dendrites, even when they are isolated from the cell body. It can be enhanced by stimulation with an agonist for metabotropic glutamate receptors or with neurotrophins, and seems to occur at specific, immobile locations in the dendrite. These sites are heterogeneous, with some showing linear translation and others showing exponential translation.

    • Stimulation-dependent protein translation in dendrites could have important functional consequences, possibly providing a mechanism for specific, activity-dependent changes in synaptic strength. Long-term plasticity in some neurons requires dendritic protein synthesis. Various models have been proposed in which local protein synthesis in dendrites could allow specific synaptic plasticity.

  • There is also evidence for mRNA localization and protein synthesis in axons. Much of this evidence comes from invertebrate axons, but it is clear that mRNAs are also found in vertebrate axons. There is, however, little evidence yet for axonal translation of mRNAs in vertebrates.

Abstract

The neurons of the brain extend axons and dendrites many hundreds of micrometres away from the cell body. The first electron microscope studies of these processes revealed that many of the structures that are found in the cell body are also present in dendrites. For example, particles resembling ribosomes and membrane structures like those of the endoplasmic reticulum (two structures that are important for protein synthesis) were seen in distal regions of dendrites, near synapses. Subsequent studies focused on identifying messenger RNAs in dendrites and providing evidence of dendritic protein synthesis. Transfection technologies have now been used to analyse translation within dendrites in response to pharmacological stimuli. These studies provide us with clues to the physiological role of the dendrite not just as a signal transducer, but also as a modulator of long-term synaptic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron-microscopic evidence for the existence of Golgi markers in neuronal dendrites.
Figure 2: In situ hybridization showing that MAP2 mRNA is localized in neuronal dendrites in tissue sections.
Figure 3: Time course of mRNA detection in dendritic growth cones in culture.
Figure 4: Movement of RNA-containing granules in dendrites of cultured neurons.
Figure 5: De novo protein synthesis in live dendrites correlates with ribosomal protein abundance.
Figure 6: Schematic of mRNA translational processes in dendrites.

Similar content being viewed by others

References

  1. Magee, J. C. Dendritic integration of excitatory synaptic input. Nature Rev. Neurosci. 1, 181–190 (2000).

    CAS  Google Scholar 

  2. Steward, O. & Falk, P. M. Polyribosomes under developing spine synapses: growth specializations of dendrites at sites of synaptogenesis. J. Neurosci. Res. 13, 75–88 (1985).

    CAS  PubMed  Google Scholar 

  3. Steward, O. & Falk, P. M. Protein-synthetic machinery at postsynaptic sites during synaptogenesis: a quantitative study of the association between polyribosomes and developing synapses. J. Neurosci. 6, 412–423 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Steward, O. & Falk, P. M. Selective localization of polyribosomes beneath developing synapses: a quantitative analysis of the relationships between polyribosomes and developing synapses in the hippocampus and dentate gyrus. J. Comp. Neurol. 314, 545–557 (1991).

    CAS  PubMed  Google Scholar 

  5. Steward, O., Falk, P. M. & Torre, E. R. Ultrastructural basis for gene expression at the synapse: synapse-associated polyribosome complexes. J. Neurocytol. 25, 717–734 (1996).

    CAS  PubMed  Google Scholar 

  6. Palay, S. L. Synapses in the central nervous system. J. Biophys. Biochem. Cytol. 2 (Suppl.), 193–202 (1956).One of the first characterizations of membrane structures in dendrites using electron microscopy. Palay proposed that structures of the protein-synthetic pathway are present in dendrites at long distances from the cell body.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Peters, A. Fine Structure of the Nervous System (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  8. Gray, E. G. Axo-somatic and axo-denritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93, 420–433 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tarrant, S.B. & Routtenberg, A. Postsynaptic membrane and spine apparatus: proximity in dendritic spines. Neurosci. Lett. 11, 289–294 (1979).

    CAS  PubMed  Google Scholar 

  10. Tarrant, S. B. & Routtenberg, A. The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. Tissue Cell 9, 461–473 (1977).

    CAS  PubMed  Google Scholar 

  11. Matus, A. Actin-based plasticity in dendritic spines. Science 290, 754–758 (2000).

    CAS  PubMed  Google Scholar 

  12. Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168–179 (1999).Triller's group identified BiP, TGN38 and Rab1 on membrane structures near postsynaptic sites in dendrites, confirming that dendrites contain endoplasmic reticulum and Golgi apparatus.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Otsu, H. et al. Immunogold localization of inositol 1,4,5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. Cell Struct. Funct. 15, 163–173 (1990).

    CAS  PubMed  Google Scholar 

  14. Tiedge, H. & Brosius, J. Translational machinery in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 7171–7181 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pierce, J. P., Van Leyen, K. & McCarthy, J. B. Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines. Nature Neurosci. 3, 311–313 (2000).

    CAS  PubMed  Google Scholar 

  16. Merlie, J. P. & Sanes, J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature 317, 66–68 (1985).

    CAS  PubMed  Google Scholar 

  17. Garner, C. C., Tucker, R. P. & Matus, A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 336, 674–677 (1988).The first identification of an mRNA in dendrites. MAP2 mRNA was visualized in dendrites of the developing brain using in situ hybridization.

    CAS  PubMed  Google Scholar 

  18. Kleiman, R., Banker, G. & Steward, O. Differential subcellular localization of particular mRNAs in hippocampal neurons in culture. Neuron 5, 821–830 (1990).

    CAS  PubMed  Google Scholar 

  19. Burgin, K. E. et al. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 10, 1788–1798 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Furuichi, T. et al. Widespread expression of inositol 1,4,5-trisphosphate receptor type 1 gene (InsP3R1) in the mouse central nervous system. Receptors Channels 1, 11–24 (1993).

    CAS  PubMed  Google Scholar 

  21. Landry, C. F. et al. Cellular influences on RNA sorting in neurons and glia: an in situ hybridization histochemical study. Brain Res. Mol. Brain Res. 27, 1–11 (1994).

    CAS  PubMed  Google Scholar 

  22. Herb, A. et al. Prominent dendritic localization in forebrain neurons of a novel mRNA and its product, dendrin. Mol. Cell. Neurosci. 8, 367–374 (1997).

    CAS  PubMed  Google Scholar 

  23. Racca, C., Gardiol, A. & Triller, A. Cell-specific dendritic localization of glycine receptor α subunit messenger RNAs. Neuroscience 84, 997–1012 (1998).

    CAS  PubMed  Google Scholar 

  24. Bassell, G. J. et al. Sorting of β-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Link, W. et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl Acad. Sci. USA 92, 5734–5738 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lyford, G. L. et al. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 (1995).

    CAS  PubMed  Google Scholar 

  27. Femino, A. M. et al. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    CAS  PubMed  Google Scholar 

  28. Estee Kacharmina, J., Crino, P. B. & Eberwine, J. Preparation of cDNA from single cells and subcellular regions. Methods Enzymol. 303, 3–18 (1999).

    Google Scholar 

  29. Miyashiro, K., Dichter, M. & Eberwine, J. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc. Natl Acad. Sci. USA 91, 10800–10804 (1994).Used RNA amplification to measure many mRNA species within individual dendrites. Different levels of glutamate receptor subunit mRNAs were present in different dendrites of a common cell body.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Crino, P. B. & Eberwine, J. Molecular characterization of the dendritic growth cone: regulated mRNA transport and local protein synthesis. Neuron 17, 1173–1187 (1996).Developed the dendrite transfection assay and proved that dendrites were capable of translating mRNA.

    CAS  PubMed  Google Scholar 

  31. Crino, P. et al. Presence and phosphorylation of transcription factors in developing dendrites. Proc. Natl Acad. Sci. USA 95, 2313–2318 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Davis, L., Banker, G. A. & Steward, O. Selective dendritic transport of RNA in hippocampal neurons in culture. Nature 330, 477–479 (1987).Showed movement of mRNA from cell bodies to dendrites of cultured hippocampal neurons.

    CAS  PubMed  Google Scholar 

  33. Knowles, R. B. et al. Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812–7820 (1996).Showed that translocation of mRNA along dendrites of cortical neurons occurs in 'granules' of ribosomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rook, M. S., Lu, M. & Kosik, K. S. CaMKII 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassell, G. J. & Singer, R. H. Neuronal RNA localization and the cytoskeleton. Results Probl. Cell Differ. 34, 41–56 (2001).

    CAS  PubMed  Google Scholar 

  36. Knowles, R. B. & Kosik, K. S. Neurotrophin-3 signals redistribute RNA in neurons. Proc. Natl Acad. Sci. USA 94, 14804–14808 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, L. et al. Reversible attenuation of glutamatergic transmission in hippocampal CA1 neurons of rat brain slices following transient cerebral ischemia. Brain Res. 832, 31–39 (1999).

    CAS  PubMed  Google Scholar 

  38. Steward, O. et al. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751 (1998).

    CAS  PubMed  Google Scholar 

  39. Steward, O. & Worley, P. F. Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30, 227–240 (2001).Proposed two steps for the translocation of mRNA along dendrites: the stimulated synthesis and movement of mRNA along dendrites, 'routing', and the selective concentration of mRNA at a synapse, 'localization'.

    CAS  PubMed  Google Scholar 

  40. Sundell, C. L. & Singer, R. H. Actin mRNA localizes in the absence of protein synthesis. J. Cell Biol. 111, 2397–2403 (1990).

    CAS  PubMed  Google Scholar 

  41. Taneja, K. L. et al. Poly(A) RNA codistribution with microfilaments: evaluation by in situ hybridization and quantitative digital imaging microscopy. J. Cell Biol. 119, 1245–1260 (1992).

    CAS  PubMed  Google Scholar 

  42. Ainger, K. et al. Transport and localization elements in myelin basic protein mRNA. J. Cell Biol. 138, 1077–1087 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Muslimov, I. A. et al. RNA transport in dendrites: a cis-acting targeting element is contained within neuronal BC1 RNA. J. Neurosci. 17, 4722–4733 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mayford, M., Bach, M. E. & Kandel, E. CaMKII function in the nervous system explored from a genetic perspective. Cold Spring Harb. Symp. Quant. Biol. 61, 219–224 (1996).

    CAS  PubMed  Google Scholar 

  45. Mori, Y. et al. Two cis-acting elements in the 3′ untranslated region of α-CaMKII regulate its dendritic targeting. Nature Neurosci. 3, 1079–1084 (2000).

    CAS  PubMed  Google Scholar 

  46. Blichenberg, A. et al. Identification of a cis-acting dendritic targeting element in the mRNA encoding the α subunit of Ca2+/calmodulin-dependent protein kinase II. Eur. J. Neurosci. 13, 1881–1888 (2001).

    CAS  PubMed  Google Scholar 

  47. Blichenberg, A. et al. Identification of a cis-acting dendritic targeting element in MAP2 mRNAs. J. Neurosci. 19, 8818–8829 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Severt, W.L. et al. The suppression of testis–brain RNA binding protein and kinesin heavy chain disrupts mRNA sorting in dendrites. J. Cell Sci. 112, 3691–3702 (1999).

    CAS  PubMed  Google Scholar 

  49. Kiebler, M.A. et al. The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J. Neurosci. 19, 288–297 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kohrmann, M. et al. Microtubule-dependent recruitment of Staufen–green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945–2953 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29, 2276–2283 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA 94, 5395–5400 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schaeffer, C. et al. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J. 20, 4803–4813 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rao, A. & Steward, O. Evidence that protein constituents of postsynaptic membrane specializations are locally synthesized: analysis of proteins synthesized within synaptosomes. J. Neurosci. 11, 2881–2895 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis, L. et al. Protein synthesis within neuronal growth cones. J. Neurosci. 12, 4867–4877 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Feig, S. & Lipton, P. Pairing the cholinergic agonist carbachol with patterned Schaffer collateral stimulation initiates protein synthesis in hippocampal CA1 pyramidal cell dendrites via a muscarinic, NMDA-dependent mechanism. J. Neurosci. 13, 1010–1021 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mayford, M. et al. The 3′-untranslated region of CaMKII α is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc. Natl Acad. Sci. USA 93, 13250–13255 (1996).Identified the 3′-UTR region of α-CaMKII mRNA as important for mRNA translocation along dendrites.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Estee Kacharmina, J. et al. Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proc. Natl Acad. Sci. USA 97, 11545–11550 (2000).

    Google Scholar 

  59. Eberwine, J. H. et al. Translation of classes of mRNAs that are targeted to neuronal dendrites. Proc. Natl Acad. Sci. USA 98, 7080–7085 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aakalu, G. et al. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001).

    CAS  PubMed  Google Scholar 

  61. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  62. Job, C. & Eberwine, J. Identification of sites for exponential translation in living dendrites. Proc. Natl Acad. Sci. USA published online 23 October 2001 (10.1073/pnas.231485698).Measured rates of dendritic translation and showed that sites of translation were heterogeneous and exponential in dendrites on agonist stimulation of metabotropic glutamate receptors, whereas translation in cell bodies was linear.

  63. Fischer, M. et al. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    CAS  PubMed  Google Scholar 

  64. Lujan, R. et al. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1α, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat. 13, 219–241 (1997).

    CAS  PubMed  Google Scholar 

  65. Ong, W. Y. et al. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex. Exp. Brain Res. 119, 367–374 (1998).

    CAS  PubMed  Google Scholar 

  66. Ong, W. Y. et al. A light and electron microscopic study of GAT-1-positive cells in the cerebral cortex of man and monkey. J. Neurocytol. 27, 719–730 (1998).

    CAS  PubMed  Google Scholar 

  67. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).Proposed that protein synthesis in dendrites of hippocampal slices is important for some forms of synaptic plasticity.

    CAS  PubMed  Google Scholar 

  68. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1256 (2000).

    CAS  PubMed  Google Scholar 

  69. Ouyang, Y. et al. Tetanic stimulation leads to increased accumulation of Ca2+/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J. Neurosci. 19, 7823–7833 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sheetz, A. J., Nairn, A. C. & Constantine-Paton, M. NMDA receptor-mediated control of protein synthesis at developing synapses. Nature Neurosci. 3, 211–216 (2000).

    Google Scholar 

  71. Steward, O. & Halpain, S. Lamina-specific synaptic activation causes domain-specific alterations in dendritic immunostaining for MAP2 and CAM kinase II. J. Neurosci. 19, 7834–7845 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    CAS  PubMed  Google Scholar 

  73. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    CAS  PubMed  Google Scholar 

  74. Frey, U. & Morris, R. G. Synaptic tagging and long-term potentiation. Nature 385, 533–536 (1997).

    CAS  PubMed  Google Scholar 

  75. Frey, U. & Morris, R. G. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188 (1998).

    CAS  PubMed  Google Scholar 

  76. Tiedge, H., Bloom, F. E. & Richter, D. RNA, whither goest thou? Science 283, 186–187 (1999).

    CAS  PubMed  Google Scholar 

  77. Alvarez, J., Giuditta, A. & Koenig, E. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog. Neurobiol. 62, 1–62 (2000).

    CAS  PubMed  Google Scholar 

  78. Mohr, E. Subcellular RNA compartmentalization. Prog. Neurobiol. 57, 507–525 (1999).

    CAS  PubMed  Google Scholar 

  79. Chun, J. T. et al. Molecular cloning and characterization of a novel mRNA present in the squid giant axon. J. Neurosci. Res. 49, 144–153 (1997).

    CAS  PubMed  Google Scholar 

  80. Black, M. M. & Lasek, R. J. The presence of transfer RNA in the axoplasm of the squid giant axon. J. Neurobiol. 8, 229–237 (1977).

    CAS  PubMed  Google Scholar 

  81. Ingoglia, N. A. et al. Incorporation of 3H-amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA-mediated, post-translational protein modification in squid giant axons. J. Neurosci. 3, 2463–2473 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dirks, R. W. et al. Ultrastructural evidence for the axonal localization of caudodorsal cell hormone mRNA in the central nervous system of the mollusc Lymnaea stagnalis. Microsc. Res. Tech. 25, 12–18 (1993).

    CAS  PubMed  Google Scholar 

  83. Van Minnen, J. et al. De novo protein synthesis in isolated axons of identified neurons. Neuroscience 80, 1–7 (1997).

    CAS  PubMed  Google Scholar 

  84. Spencer, G. E. et al. Synthesis and functional integration of a neurotransmitter receptor in isolated invertebrate axons. J. Neurobiol. 44, 72–81 (2000).

    CAS  PubMed  Google Scholar 

  85. Yanow, S. K. et al. Biochemical pathways by which serotonin regulates translation in the nervous system of Aplysia. J. Neurochem. 70, 572–583 (1998).

    CAS  PubMed  Google Scholar 

  86. Schacher, S. et al. Expression and branch-specific export of mRNA are regulated by synapse formation and interaction with specific postsynaptic targets. J. Neurosci. 19, 6338–6347 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    CAS  PubMed  Google Scholar 

  88. Sherff, C. M. & Carew, T. J. Coincident induction of long-term facilitation in Aplysia: cooperativity between cell bodies and remote synapses. Science 285, 1911–1914 (1999).

    CAS  PubMed  Google Scholar 

  89. Trembleau, A., Morales, M. & Bloom, F. E. Aggregation of vasopressin mRNA in a subset of axonal swellings of the median eminence and posterior pituitary: light and electron microscopic evidence. J. Neurosci. 14, 39–53 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Trembleau, A., Morales, M. & Bloom, F. E. Differential compartmentalization of vasopressin messenger RNA and neuropeptide within the rat hypothalamo-neurohypophysial axonal tracts: light and electron microscopic evidence. Neuroscience 70, 113–125 (1996).

    CAS  PubMed  Google Scholar 

  91. Jirikowski, G. F., Sanna, P. P. & Bloom, F. E. mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophysial tract. Proc. Natl Acad. Sci. USA 87, 7400–7404 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mohr, E., Meyerhof, W. & Richter, D. The hypothalamic hormone oxytocin: from gene expression to signal transduction. Rev. Physiol. Biochem. Pharmacol. 121, 31–48 (1992).

    CAS  PubMed  Google Scholar 

  93. Tiedge, H. et al. Transport of BC1 RNA in hypothalamo-neurohypophyseal axons. J. Neurosci. 13, 4214–4219 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994).

    CAS  PubMed  Google Scholar 

  95. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    CAS  PubMed  Google Scholar 

  96. Denis-Donini, S. et al. Localization of calcitonin gene-related peptide mRNA in developing olfactory axons. Cell Tissue Res. 294, 81–91 (1998).

    CAS  PubMed  Google Scholar 

  97. Koenig, E. et al. Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J. Neurosci. 20, 8390–8400 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Macdonald, P. M. & Struhl, G. cis-acting sequences responsible for anterior localization of Bicoid mRNA in Drosophila embryos. Nature 336, 595–598 (1988).

    CAS  PubMed  Google Scholar 

  99. Melton, D. A. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328, 80–82 (1987).

    CAS  PubMed  Google Scholar 

  100. Mowry, K. L. & Melton, D. A. Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science 255, 991–994 (1992).

    CAS  PubMed  Google Scholar 

  101. Driever, W. & Nusslein-Volhard, C. The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    CAS  PubMed  Google Scholar 

  102. Dalby, B. & Glover, D. M. Discrete sequence elements control posterior pole accumulation and translational repression of maternal Cyclin B RNA in Drosophila. EMBO J. 12, 1219–1227 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Eberwine, J. et al. mRNA expression analysis of tissue sections and single cells. J. Neurosci. 21, 8310–8314 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health grants to J.E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Eberwine.

Related links

Related links

DATABASES

FlyBase

Bicoid

Cyclin B

Nanos

GenBank

VG1

LocusLink

β-actin

Arc

BC1

BDNF

calcitonin-gene-related peptide

α-CaMKII

Cx26

Cx32

dendrin

EF-1α

FMRP

GAD65

GAP43

GluR2

glycine receptors

InsP3R

ligatin

MAP2

MBP

mGluR1

mGluR5

neurofilament light polypeptide

neurofilament medium polypeptide

neurogranin

neurotrophin 3

NGFR

NOS

odorant receptors

olfactory marker protein

oxytocin

prodynorphin

staufen

TGN38

translin

Trk

tubulin

vasopressin

FURTHER INFORMATION

dendrites

Glossary

PULSE–CHASE EXPERIMENTS

Experiments in which addition of a radioactive amino acid (pulse) is followed by non-labelled amino acid (chase), and the production of radioactive proteins from the amino-acid precursors is monitored.

CIS-ACTING ELEMENT

A regulatory genetic element located in the same DNA molecule as the gene being regulated.

SYNAPTOSOME

The presynaptic terminal isolated after subcellular fractionation. This structure retains the anatomical integrity of the terminal, and can take up, store and release neurotransmitters.

MYRISTOYLATION

The covalent attachment of a hydrophobic myristoyl group to the amino-terminal glycine residue of a nascent polypeptide.

MULTIPHOTON MICROSCOPY

A technique in which the intersection of distinct light sources is used to visualize objects. This method produces lower-energy fluorescent stimulation than confocal microscopy, resulting in less phototoxicity.

SYNAPTONEUROSOME

The presynaptic terminal isolated in conjunction with the postsynaptic spine after subcellular fractionation. This structure retains the anatomical integrity of the synapse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Job, C., Eberwine, J. Localization and translation of mRNA in dentrites and axons. Nat Rev Neurosci 2, 889–898 (2001). https://doi.org/10.1038/35104069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing