Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynamin is a GTPase stimulated to high levels of activity by microtubules

Abstract

DYNAMIN was initially identified in calf brain tissue as a protein of relative molecular mass 100,000 which induced nucleotide-sensitive bundling of microtubules1. Purified dynamin showed only trace ATPase activity. But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production1. Dynamin is the product of the Drosophila gene shibire2,3, which has been implicated in synaptic vesicle recycling4,5 and, more generally, in the budding of endocytic vesicles from the plasma membrane6,7. Dynamin also shows8 extensive homology with proteins that participate in vacuolar protein sorting9 and spindle polebody separation10 in yeast, and in interferon-induced viral resistance11,12 in mammals. All members of this family contain consensus sequence elements consistent with GTP binding near their amino termini, although none has been shown to have GTPase activity. We report here that dynamin is a specific GTPase which can be stimulated to very high levels of activity by microtubules.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shpetner, H. S. & Vallee, R. B. Cell 59, 421–432 (1989).

    Article  CAS  Google Scholar 

  2. Chen, M. S. et al. Nature 351, 583–586 (1991).

    Article  ADS  CAS  Google Scholar 

  3. van der Bliek, A. M. & Meyerowitz, E. M. Nature 351, 411–414 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Poodry, C. A. & Edgar, L. J. Cell Blol. 81, 520–527 (1979).

    Article  CAS  Google Scholar 

  5. Koenig, J. H., Kosaka, T. & Ikeda, K. J. Neurosci. 9, 1937–1942 (1989).

    Article  CAS  Google Scholar 

  6. Kosada, T. & Ikeda, K. J. Cell Blol. 97, 499–507 (1983).

    Article  Google Scholar 

  7. Kessel, I., Hoist, B. D. & Roth, T. F. Proc. natn. Acad. Sci. U.S.A. 86, 4968–4972 (1989).

    Article  ADS  Google Scholar 

  8. Obar, R., Collins, C. A., Hammarback, J. A., Shpetner, H. S. & Vallee, R. B. Nature 347, 256–261 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Rothman, J. H., Raymond, C. K., Gilbert, T., O'Hara, P. J. & Stevens, T. H. Cell 61, 1063–1074 (1990).

    Article  CAS  Google Scholar 

  10. Yeh, E., Driscoll, R., Coltrera, M., Olins, A. & Bloom, K. Nature 349, 713–715 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Staeheli, P. & Sutcliffe, J. G. Molec. cell. Biol. 8, 4524–4528 (1988).

    Article  CAS  Google Scholar 

  12. Staeheli, P., Haller, O., Boll, W., Lindermann, J. & Weissmann, C. Cell 44, 147–158 (1986).

    Article  CAS  Google Scholar 

  13. de S. Otero, A. Biochem. Pharmac. 39, 1399–1404 (1990).

    Article  Google Scholar 

  14. Henderson, J. F. & Paterson, A. R. P. Nucleotide Metabolism 18–22 (Academic, New York, 1973).

    Google Scholar 

  15. Agarwal, R. P., Robison, B. & Parks, R. E. Jr Meth. Enzym. 51, 376–386 (1978).

    Article  CAS  Google Scholar 

  16. Steeg, P. S. et al. J. natn. Cancer Inst. 80, 200–204 (1988).

    Article  CAS  Google Scholar 

  17. Biggs, J., Hersperger, E., Steeg, P. S., Liotta, L. A. & Shearn, A. Cell 63, 933–940 (1990).

    Article  CAS  Google Scholar 

  18. Penningroth, S. M. & Kirschner, M. W. J. molec. Biol. 115, 643–673 (1977).

    Article  CAS  Google Scholar 

  19. Burns, R. G. & Islam, K. B. Eur. J. Biochem. 117, 515–519 (1981).

    Article  CAS  Google Scholar 

  20. Wagner, M. C., Pfister, K. C., Bloom, G. S. & Brady, S. T. Cell Motil. Cytoskel. 12, 195–215 (1989).

    Article  CAS  Google Scholar 

  21. Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad Sci. U.S.A. 83, 8530–8534 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. J. Cell Biol. 107, 1001–1009 (1988).

    Article  CAS  Google Scholar 

  23. Paschal, B. M., Obar, R. A. & Vallee, R. B. Nature 342, 569–572 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Shpetner, H. S. & Vallee, R. B. Meth. Enzym. 196, 181–192 (1991).

    Article  Google Scholar 

  25. Vallee, R. B. Meth. Enzym. 134, 104–116 (1986).

    Article  CAS  Google Scholar 

  26. Pollard, T. D., Doberstein, S. K. & Zot, H. G. A. Rev. Physiol. 53, 653–681 (1991).

    Article  CAS  Google Scholar 

  27. Harrington, W. R. & Rodgers, M. E. A. Rev. Biochem. 53, 35–73 (1984).

    Article  CAS  Google Scholar 

  28. Bourne, H. R., Sanders, D. A. & McCormick, F. Nature 348, 125–132 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Matteioni, R. & Kreis, T. E. J. Cell Biol. 105, 1253–1265 (1987).

    Article  Google Scholar 

  30. Herman, B. & Albertini, D. F. J. Cell Biol. 98, 565–576 (1984).

    Article  CAS  Google Scholar 

  31. Balch, W. E. Trends Biochem. Sci. 15, 473–477 (1990).

    Article  Google Scholar 

  32. Hall, A. Science 249, 635–640 (1990).

    Article  ADS  CAS  Google Scholar 

  33. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. & Candia, O. A. Analyt. Biochem. 100, 95–97 (1979).

    Article  CAS  Google Scholar 

  34. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. Meth. Enzym. 196, 181–192 (1991).

    Article  CAS  Google Scholar 

  35. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  36. Bloom, G. S. & Vallee, R. B. J. Cell. Biol. 96, 1523–1531 (1986).

    Article  Google Scholar 

  37. Rosengard, A. et al. Nature 342, 177–180 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Spudich, J. A. & Watt, S. J. biol. Chem. 246, 4866–4871 (1971).

    CAS  Google Scholar 

  39. Vikstrom, K. L., Miller, R. K. & Goldman, R. D. Meth. Enzym. 196, 506–525 (1991).

    Article  CAS  Google Scholar 

  40. Keen, J. H., Willingham, M. C. & Pastan, I. H. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shpetner, H., Vallee, R. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992). https://doi.org/10.1038/355733a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355733a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing