Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger

Abstract

IN non-excitable cells, release of Ca2+ from the inositol 1,4,5-trisphosphate (InsP3)-sensitive store can activate Ca2+ entry1–3. Very little is known about the signal mechanism relating store emptying to plasma membrane Ca2+ influx. It has been suggested that the signal may be either a diffusible messenger like an inositol phosphate4, or the InsP3 receptor itself, which, by physically coupling to some component of Ca2+ entry in the plasma membrane, may link store release to Ca2+ entry5. The nature of the Ca2+ entry pathway is also unclear. Only in mast cells has a very selective Ca2+ current been observed after store emptying6. Activation of exogenous 5-hydroxytryptamine (5-HT) receptors expressed in Xenopus oocytes or direct injection of InsP3 evokes Ca2+ entry activated by InsP3 pool depletion7. Here we investigate the nature of this influx pathway and find a current activated by pool depletion. This has an unusual selectivity in that it is more permeable to Ca2+ ions than to other divalent cations (Ba2+, Sr2+ or Mn2+ ). Moreover, a K+ permeability is also stimulated after pool depletion. The activation of this store depletion current involves both a phosphatase and an unidentified diffusible messenger. Both the Ca2+ entry pathway and the activating factors found here may be relevant to pool-depleted Ca2+ entry in a variety of non-excitable cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Putney, J. W. Jr Cell Calcium 7, 1–12 (1986).

    Article  CAS  Google Scholar 

  2. Berridge, M. J. & Irvine, R. F. Nature 341, 197–205 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Putney, J. W. Jr et al. FASEB J. 3, 1899–1905 (1989).

    Article  CAS  Google Scholar 

  4. Irvine, R. F. Bioessays 13, 419–427 (1991).

    Article  CAS  Google Scholar 

  5. Berridge, M. J. Nature 361, 315–325 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Hoth, M. & Penner, R. Nature 355, 353–355 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Parekh, A. B., Foguet, M., Lübbert, H. & Stühmer, W. J. Physiol. (in the press).

  8. Parker, I. & Ivorra, I. Science 250, 977–979 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Lechleiter, J. & Clapham, D. Cell 69, 283–294 (1992).

    Article  CAS  Google Scholar 

  10. Lupu-Meiri, M., Beit-Or, A., Christensen, S. B. & Oron, Y. Cell Calcium 14, 101–110 (1993).

    Article  CAS  Google Scholar 

  11. Cohen, P. Trends biochem. Sci. 15, 98–102 (1990).

    Article  CAS  Google Scholar 

  12. Kramer, R. H. Neuron 2, 335–341 (1990).

    Article  Google Scholar 

  13. Miledi, R. & Parker, I. J. Physiol. 357, 173–183 (1984).

    Article  CAS  Google Scholar 

  14. Hoth, M. & Penner, R. J. Physiol. 465, 359–386 (1993).

    Article  CAS  Google Scholar 

  15. Sage, S. O., Merritt, J. E., Hallam, T. J. & Rink, T. J. Biochem. J. 258, 923–926 (1989).

    Article  CAS  Google Scholar 

  16. Merritt, J. E., Jacob, R. & Hallam, T. J. J. biol. Chem. 253, 1522–1527 (1989).

    Google Scholar 

  17. Mertz, L. M., Baum, B. J. & Ambudkar, I. S. J. biol. Chem. 265, 15010–15014 (1990).

    CAS  PubMed  Google Scholar 

  18. Tinker, A. & Williams, A. J. J. gen. Physiol. 100, 479–493 (1992).

    Article  CAS  Google Scholar 

  19. Kume, H., Takai, A., Tokuno, H. & Tomita, T. Nature 341, 152–154 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Yao, Y. & Parker, I. Proc. R. Soc. Lond. B246, 269–274 (1992).

    Google Scholar 

  21. Vostal, J. G., Jackson W. L. & Shulman, N. R. J. biol. Chem. 266, 16911–16916 (1991).

    CAS  PubMed  Google Scholar 

  22. Foguet, M. et al. EMBO J. 11, 3481–3487 (1992).

    Article  CAS  Google Scholar 

  23. Stühmer, W. Meth. Enzym. 207, 319–339 (1992).

    Article  Google Scholar 

  24. Nomura, Y. et al. Molec. Brain Res. 2, 113–123 (1987).

    Article  CAS  Google Scholar 

  25. Zodrow, J. & Rogers, S. Life Sci. 34, 1967–1975 (1984).

    Article  CAS  Google Scholar 

  26. Lübbert, H. et al. J. Neurosci. 7, 1159–1165 (1987).

    Article  Google Scholar 

  27. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  28. White, M. M. & Aylwin, M. Molec. Pharmac. 37, 720–724 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parekh, A., Terlau, H. & Stühmer, W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature 364, 814–818 (1993). https://doi.org/10.1038/364814a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364814a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing