Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preferential inhibition of oω-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors

Abstract

ADENOSINE is a potent modulator of transmitter release at a variety of synapses. The adenosine Al receptor is assumed to reside in presynaptic terminals and to function as a negative autoreceptor1. How adenosine reduces transmitter release is uncertain2; it may reduce the calcium influx during nerve terminal depolarization by either activating K+ currents3,4 or inhibiting Ca2+ currents5,6, although other mechanisms have been proposed7–9. We have directly measured intracellular Ca2+ concentrations of giant presynaptic terminals in the chick ciliary ganglion. We report here that adenosine inhibited the nerve-evoked Ca2+ influx in the termi-nal by activating Al receptors. Reduced Ca2+ influx was due largely to inhibition of ω-conotoxin GVIA-sensitive Ca2 + channels in the presynaptic terminal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicoll, R. A., Malenka, R. & Kauer, J. A. Physiol. Rev. 70, 513–565 (1990).

    Article  CAS  Google Scholar 

  2. Greene, R. W. & Haas, H. L. Progr. Neurobiol. 36, 329–341 (1991).

    Article  CAS  Google Scholar 

  3. Trussell, L. O. & Jackson, M. B. Proc. natn. Acad. Sci. U.S.A. 82, 4857–4861 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Gerber, U., Greene, R. W., Haas, H. L. & Stevens, D. R. J. Physiol., Lond. 417, 567–578 (1989).

    Article  CAS  Google Scholar 

  5. Hamilton, B. P. & Smith, D. O. J. Physiol., Lond. 432, 327–341 (1991).

    Article  CAS  Google Scholar 

  6. Scholz, K. P. & Miller, R. J. J. Physiol., Lond. 435, 373–393 (1991).

    Article  CAS  Google Scholar 

  7. Silinsky, E. M. Trends pharmac. Sci. 7, 180–185 (1986).

    Article  CAS  Google Scholar 

  8. Scholz, K. P. & Miller, R. J. Neuron 8, 1139–1150 (1992).

    Article  CAS  Google Scholar 

  9. Silinsky, E. M. & Solsona, C. S. J. Physiol., Lond. 457, 315–328 (1992).

    Article  CAS  Google Scholar 

  10. Bennett, M. R. & Ho, S. J. Physiol., Lond. 440, 513–527 (1991).

    Article  CAS  Google Scholar 

  11. Snyder, S. H. A. Rev. Neurosci. 8, 103–124 (1985).

    Article  CAS  Google Scholar 

  12. Branisteanu, D. D., Haulica, I. D., Proca, B. & Nhue, B. G. Naunyn-Schmiedeberg's Arch. Pharmacol. 308, 273–279 (1979).

    Article  CAS  Google Scholar 

  13. Scanziani, M., Capogna, M., Gahwiler, B. G. & Thomposon, S. M. Neuron 9, 919–927 (1992).

    Article  CAS  Google Scholar 

  14. Schilling, W. P., Rajan, L. & Strobl-Jager, E. J. biol. Chem. 264, 12838–12848 (1989).

    CAS  PubMed  Google Scholar 

  15. Kwan, C.-Y. & Putney, J. W. Jr J. biol. Chem. 265, 678–684 (1990).

    CAS  PubMed  Google Scholar 

  16. Yawo, H. & Momiyama, A. J. Physiol., Lond. 460, 153–172 (1993).

    Article  CAS  Google Scholar 

  17. Dodge, F. A. Jr & Rahamimoff, R. J. physiol., Lond. 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  18. Yawo, H. J. Physiol., Lond. 417, 307–322 (1989).

    Article  CAS  Google Scholar 

  19. Shimahara, T., Icard-Liepkalins, C., Ohmori, H. & Shigemoto, T. Brain Res. 524, 219–224 (1990).

    Article  CAS  Google Scholar 

  20. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  PubMed  Google Scholar 

  21. Haugland, R. P. in Handbook of Fluorescent Probes and Research Chemicals 5th edn 114 (Molecular Probes Inc., Eugene, 1992).

    Google Scholar 

  22. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yawo, H., Chuhma, N. Preferential inhibition of oω-conotoxin-sensitive presynaptic Ca2+ channels by adenosine autoreceptors. Nature 365, 256–258 (1993). https://doi.org/10.1038/365256a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365256a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing