Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of a proline residue as a transduction element involved in voltage gating of gap junctions

Abstract

GAP junction channels are structurally distinct from other ion channels in that they comprise two hemichannels which interact head-to-head to form an aqueous channel between cells. Intercellular voltage differences together with increased intracellular concentrations of H+ and Ca2+ cause closure of these normally patent channels1. The relative sensitivity to voltage varies with the subunit (connexin) composition of the channels2. The third of four transmembrane-spanning regions (M3) in connexins has been proposed to form the channel lining3, and a global 'tilting' of the hemichannel subunits has been correlated with channel closure4. But specific components involved in transduction of channel gating events have not been identified in either gap junctions or other ion channel classes (however, see model in ref. 5). We have examined a strictly conserved proline centrally located in M2 of connexin proteins. Mutation of this proline (Pro 87) in connexin 26 causes a reversal in the voltage-gating response when the mutant hemichannel is paired with wild-type connexin 26 in the Xenopus oocyte system. This suggests that the unique properties associated with this residue are critical to the transduction of voltage gating in these channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Spray, D. C. & Bennett, M. V. A. Rev. Physiol. 47, 281–303 (1985).

    Article  CAS  Google Scholar 

  2. Hennemann, H. et al. J. Cell Biol. 117, 1299–1310 (1992).

    Article  CAS  Google Scholar 

  3. Milks, L. C. et al. EMBO J. 7, 2967–2975 (1988).

    Article  CAS  Google Scholar 

  4. Unwin, P. N. T. & Ennis, P. D. Nature 307, 609–613 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Guy, R. H. & Conti, F. Trends Neurosci. 13, 201–206 (1990).

    Article  CAS  Google Scholar 

  6. Yun, R. H., Anderson, A. & Hermans, J. Proteins Struct. Funct. Genet. 10, 219–228 (1991).

    Article  CAS  Google Scholar 

  7. Barlow, D. J. & Thornton, J. M. J. molec. Biol. 201, 601–619 (1988).

    Article  CAS  Google Scholar 

  8. Deisenhofer, J. et al. Nature 318, 618–624 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Henderson, R. et al. J. molec Biol. 213, 899–929 (1985).

    Article  Google Scholar 

  10. Schulz, G. & Schirmer, R. H. Principles of Protein Structure (Springer, New York, 1979).

    Book  Google Scholar 

  11. Brandl, C. J. & Deber, C. M. Proc. natn. Acad. Sci. U.S.A. 83, 917–921, (1986).

    Article  ADS  CAS  Google Scholar 

  12. Lolkema, J. S., Puttner, I. B. & Kaback, H. R. Biochemistry 27, 8307–8310 (1988).

    Article  CAS  Google Scholar 

  13. Mogi, T., Stern, L. J., Chao, B. H. & Khorana, H. G. J. biol. Chem. 264, 14192–14196 (1989).

    CAS  PubMed  Google Scholar 

  14. Fimmel, A. L. et al. Biochem. J. 213, 451–458 (1983).

    Article  CAS  Google Scholar 

  15. Barrio, L. C. et al. Proc. natn. Acad. Sci. U.S.A. 88, 8410–8414 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Bennett, M. V. L. et al. Gap Junctions (eds Hertzberg, E. L. & Johnson, R. G.) 287–304 (Liss, New York, 1988).

    Google Scholar 

  17. Werner, R. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5380–5384 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Verselis, V. K. et al. Neurosci. Abstr. 22nd annual meeting, Anaheim CA, Oct. 25–30, Abstr. 275.10 (1992).

  19. Veenstra, R. D. Am. J. Physiol. 258, C662–C672 (1990).

    Article  CAS  Google Scholar 

  20. Reed, K. E. et al. J. clin. Invest. 91, 997–1004 (1993).

    Article  CAS  Google Scholar 

  21. Haefligers, J. A. et al. J. biol. Chem. 267, 2057–2064 (1992).

    Google Scholar 

  22. Connolly, L. G. Comp. Biochem. Physiol. 93A, 221–231 (1989).

    Article  CAS  Google Scholar 

  23. Grenningloh, G. et al. Nature 338, 215–220 (1987).

    Article  ADS  Google Scholar 

  24. Schofield, P. R. et al. Nature 328, 221–227 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Willecke, K. et al. J. Cell Biol. 114, 1049–1057 (1991).

    Article  CAS  Google Scholar 

  26. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchyna, T., Xu, L., Gao, F. et al. Identification of a proline residue as a transduction element involved in voltage gating of gap junctions. Nature 365, 847–849 (1993). https://doi.org/10.1038/365847a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365847a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing