Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin

Abstract

The biophysical properties of T-type voltage-gated calcium channels are well suited to pacemaking and to supporting calcium flux near the resting membrane potential in both excitable and non-excitable cells. We have identified a new scorpion toxin (kurtoxin) that binds to the α 1G T-type calcium channel with high affinity and inhibits the channel by modifying voltage-dependent gating. This toxin distinguishes between α 1G T-type calcium channels and other types of voltage-gated calcium channels, including α 1A , α 1B , α 1C and α 1E . Like the other α-scorpion toxins to which it is related, kurtoxin also interacts with voltage-gated sodium channels and slows their inactivation. Kurtoxin will facilitate characterization of the subunit composition of T-type calcium channels and help determine their involvement in electrical and biochemical signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of kurtoxin from scorpion venom.
Figure 2: Inhibition of α1G T-type calcium channels by kurtoxin.
Figure 3: Kurtoxin shifts the opening of the α1G T-type calcium channel to more depolarized voltages.
Figure 4: Kurtoxin slows activation and inactivation of α1G T-type calcium channels.
Figure 5: Concentration dependence of inhibition by kurtoxin.
Figure 6: Selectivity of kurtoxin for different voltage-gated calcium channels.
Figure 7: Kurtoxin slows inactivation of voltage-gated sodium channels.

Similar content being viewed by others

References

  1. Llinas, R. & Yarom, Y. Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro. J. Physiol. (Lond.) 315, 569–584 (1981).

    Article  CAS  Google Scholar 

  2. Carbone, E. & Lux, H. D. A low voltage activated, fully inactivating Ca2+ channel in vertebrate sensory neurones. Nature 310, 501–511 ( 1984).

    Article  CAS  Google Scholar 

  3. Bossu, J. L., Feltz, A. & Thomann, J. M. Depolarization elicits two distinct calcium currents in vertebrate sensory neurones. Pflügers Arch. 403, 360–368 (1985).

    Article  CAS  Google Scholar 

  4. Bean, B. P. Two kinds of calcium channels in canine atrial cells. J. Gen. Physiol. 86, 1–30 (1985 ).

    Article  CAS  Google Scholar 

  5. Armstrong, C. M. & Matteson, D. R. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227, 65–67 ( 1985).

    Article  CAS  Google Scholar 

  6. Nilius, B., Hess, P., Lansman, J. B. & Tsien, R. W. A novel type of cardiac calcium channel in ventricular cells. Nature 316, 443–446 (1985).

    Article  CAS  Google Scholar 

  7. Kostyuk, P. G., Shuba, Y. M. & Savchenko, A. N. Three types of calcium channels in the membranes of mouse sensory neurons. Pflügers Arch. 411, 611–669 (1988).

    Article  Google Scholar 

  8. Chen, C. & Hess, P. Mechanism of gating of T-type calcium channels. J. Gen. Physiol. 96, 603– 630 (1990).

    Article  CAS  Google Scholar 

  9. Hagiwara, N., Irisawa, H. & Kameyama, M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J. Physiol. (Lond.) 395, 233–253 ( 1988).

    Article  CAS  Google Scholar 

  10. Jahnsen, H. & Llinas, R. J. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. (Lond.) 349, 227–247 (1984).

    Article  CAS  Google Scholar 

  11. Huguenard, J. R. Low-threshold calcium currents in central nervous system neurons. Annu. Rev. Physiol. 58, 329–348 (1996).

    Article  CAS  Google Scholar 

  12. Cohen, C. J., McCarthy, R. T., Barrett, P. Q. & Rasmussen, H. Ca2+ channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca2+ current. Proc. Natl. Acad. Sci. USA 85, 2412– 2416 (1988).

    Article  CAS  Google Scholar 

  13. Chen, C., Corbley, M., Roberts, T. & Hess, P. Voltage-sensitive calcium channels in normal and transformed 3T3 fibroblasts. Science 239, 1024–1026 ( 1988).

    Article  CAS  Google Scholar 

  14. Santi, C. M., Darszon, A. & Hernandez-Cruz, A. A dihydropyridine-sensitive T-type Ca2+ current is the main Ca2+ current carrier in mouse primary spermatocytes. Am. J. Physiol. 271, C1583– C1593 (1996).

    Article  CAS  Google Scholar 

  15. Bezprozvanny, I. & Tsien R. W. Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40–5967). Mol. Pharmacol. 48, 540–549 (1995).

    CAS  PubMed  Google Scholar 

  16. Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896– 900 (1998).

    Article  CAS  Google Scholar 

  17. Liman, E. R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K+ channel determined by construction of mutimeric cDNAs. Neuron 9, 861–871 (1992).

    Article  CAS  Google Scholar 

  18. Meves, H., Simard, J. M. & Watt, D. D. Interactions of scorpion toxins with the sodium channel. Ann. NY Acad. Sci. 479,113– 132 (1986).

    Article  CAS  Google Scholar 

  19. McDonough, S. I., Lampe, R. A., Keith, R. A. & Bean, B. P Voltage-dependent inhibition of N- and P-type calcium channels by the peptide toxin w-grammotoxin-SIA. Mol. Pharmacol. 52, 1095–1104 (1997).

    Article  CAS  Google Scholar 

  20. McDonough, S. I., Mintz, I. M. & Bean, B. P. Alteration of P-type calcium channel gating by the spider toxin w-Aga-IVA. Biophys. J. 72, 2117–2128 (1997).

    Article  CAS  Google Scholar 

  21. Swartz, K. J. & MacKinnon, R. Hanatoxin modifies the gating of a voltage-dependent K+ channel through multiple binding sites. Neuron 18, 665–673. (1997).

    Article  CAS  Google Scholar 

  22. Cribbs, L. L. et al. Cloning and characterization of α1H from human heart, a member of the T-type Ca2+ channel gene family. Circ. Res. 83, 103–109 (1998).

    Article  CAS  Google Scholar 

  23. Dubel, S. J. et al. Molecular cloning of the α-1 subunit of an ω-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sci. USA 89, 5058–5062 (1992).

    Article  CAS  Google Scholar 

  24. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402 (1991).

    Article  CAS  Google Scholar 

  25. Wei, X. et al. Increase in Ca2+ channel expression by deletions at the amino terminus of the cardiac α1C subunit. Receptors Channels 4, 205–215 ( 1996).

    CAS  PubMed  Google Scholar 

  26. Schneider, T. et al. Molecular analysis and functional expression of the human type E neuronal Ca2+ channel α1 subunit. Receptors Channels 2, 255–270 (1994).

    CAS  PubMed  Google Scholar 

  27. Auld, V. J. et al. A rat brain Na+ channel α subunit with novel gating properties. Neuron 1, 449– 461 (1988).

    Article  CAS  Google Scholar 

  28. Isom, L. L. et al. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256 , 839–842 (1992).

    Article  CAS  Google Scholar 

  29. Catterall, W. A. Binding of scorpion toxin to receptor site associated with sodium channels in frog muscle: correlation of voltage-dependent binding with activation. J. Gen. Physiol. 74, 357– 391 (1979).

    Article  Google Scholar 

  30. Wang, G. K. & Strichartz, G. Kinetic analysis of the action of Leiurus scorpion toxin on ionic currents in myelinated nerve. J. Gen. Physiol. 86, 739–762 (1985).

    Article  CAS  Google Scholar 

  31. Gonoi, T. & Hille, B. Gating of Na+ channels: inactivation modifiers discriminate among models. J. Gen. Physiol . 89, 253–274 ( 1987).

    Article  CAS  Google Scholar 

  32. Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T. & Catterall, W. Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel α subunit. J. Biol. Chem. 271, 15950–15962 (1996).

    Article  CAS  Google Scholar 

  33. Li-Smerin Y. & Swartz, K. J. Gating modifier toxins recognize a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl. Acad. Sci. USA 95, 8585–8589 (1998).

    Article  CAS  Google Scholar 

  34. Swartz, K. J. & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997).

    Article  CAS  Google Scholar 

  35. Soong, T. W. et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260 , 1133–1136 (1993).

    Article  CAS  Google Scholar 

  36. Bourinet, E. et al. The α1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. J. Neurosci. 16, 4983–4993 (1996).

    Article  CAS  Google Scholar 

  37. Meir, A. & Dolphin, A. C. Known calcium channel α1 subunits can form low threshold small conductance channels with similarities to native T-type channels. Neuron 20, 341 –351.

  38. Bean, B. P. & McDonough, S. I. Two for T. Neuron 20, 825–828 ( 1998).

    Article  CAS  Google Scholar 

  39. Pragnell, M., Sakamoto, J., Jay, S. D. & Campbell, K. P. Cloning and tissue-specific expression of the brain calcium channel β-subunit. FEBS Lett. 291, 253–258 (1991).

    Article  CAS  Google Scholar 

  40. Ellis, S. B. et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP sensitive calcium channel. Science 241, 1661–1664 (1988).

    Article  CAS  Google Scholar 

  41. Wei, X. et al. Heterologous regulation of the cardiac Ca2+ channel α1 subunit by skeletal muscle β and γ subunits. Implications for the structure of cardiac L-type Ca2+ channels. J. Biol. Chem. 266, 21943–21947 ( 1991).

    CAS  PubMed  Google Scholar 

  42. Jaffe, H., Veeranna Shetty, K. T. & Pant, H. C. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching. Biochemistry 37, 3931–3940 (1998).

    Article  CAS  Google Scholar 

  43. Seok, Y-J et al. High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J. Biol. Chem. 272, 26511– 26521 (1997).

    Article  CAS  Google Scholar 

  44. Stone, K. L. & Williams, K. R. in A Practical Guide to Protein and Peptide Purification for Microsequencing (ed. Matsudaira, P.) 43–69 (Academic, San Diego, CA, 1993 ).

    Book  Google Scholar 

Download references

Acknowledgements

We thank Zhe Lu, Chinfei Chen and Yingying Li-Smerin for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenton J. Swartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, RI., Jaffe, H., Cribbs, L. et al. Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci 1, 668–674 (1998). https://doi.org/10.1038/3669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3669

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing