Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF4

Abstract

ALUMINIUM fluoride (A1F4) activates members of the hetero-trimeric G-protein (Gαβγ) family1,2 by binding to inactive Gα·GDP near the site occupied by the γ-phosphate in Gα·GTP (ref. 3). Here we describe the crystal structure of transducin a o GDP acti-vated with aluminium fluoride (G·GDP·A1F4·H·O) at 1.7 Å, a resolution sufficient to establish the coordination geometry of the bound aluminium fluoride as well as the extensive network of direct and water-mediated interactions that stabilize it. These observations are derived from three independent representations in the asymmetric unit, eliminating any chance of drawing conclu-sions based on stereochemistry imposed by crystal packing. Surprisingly, aluminium fluoride activates Gα·GDP by binding with a geometry resembling a pentavalent intermediate for GTP hydrolysis. The stabilizing interactions involve not only residues that interact with the y-phosphate in G·GTPγS, but also conserved residues essential for GTPase activity. Thus the G·GDP·AIF4·H2O structure provides new insight into the mechanism of GTP hydrolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sternweis, P. C. & Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 79, 4888–4891 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Bigay, J., Deterre, P., Pfister, C. & Chabre, M. FEBS Lett. 191, 181–185 (1985).

    Article  CAS  Google Scholar 

  3. Higashijima, T. et al. J. biol. Chem. 266, 3396–3401 (1991).

    CAS  PubMed  Google Scholar 

  4. Noel, J. P., Hamm, H. E. & Sigler, P. B. Nature 366, 654–663 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. Nature 369, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Westheimer, F. H. Science 235, 1173–1178 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Swain, C. G. & Brown, J. F. Jr J. Am. chem. Soc. 74, 2538–2543 (1952).

    Article  CAS  Google Scholar 

  8. Schepartz, A. & Breslow, R. J. Am. chem. Soc. 109, 1814–1826 (1987).

    Article  CAS  Google Scholar 

  9. Goody, R. S. et al. Phil. Trans. R. Soc. B336, 3–11 (1992).

    Article  CAS  Google Scholar 

  10. Pai, E. F. et al. EMBO J. 9, 2351–2359 (1990).

    Article  CAS  Google Scholar 

  11. Schweins, T., Langen, R. & Warshel, A. Nature struct. Biol. 1, 476–484 (1994).

    Article  CAS  Google Scholar 

  12. Frech, M. et al. Biochemistry 33, 3237–3244 (1994).

    Article  CAS  Google Scholar 

  13. Prive, G. G. et al. Proc. natn. Acad. Sci. U.S.A. 89, 3649–3653 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Coleman, D. E. et al. Science 265, 1405–1412 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Krengel, U. et al. Cell 62, 539–548 (1990).

    Article  CAS  Google Scholar 

  16. Antonny, B., Chardin, P., Roux, M. & Chabre, M. Biochemistry 30, 8287–8295 (1991).

    Article  CAS  Google Scholar 

  17. Polakis, P. & McCormick, F. J. biol. Chem. 268, 9157–9160 (1993).

    CAS  PubMed  Google Scholar 

  18. Frech, M. et al. Science 249, 169–171 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Lowy, D. R. & Willumsen, B. M. A. Rev. Biochem. 62, 851–891 (1993).

    Article  CAS  Google Scholar 

  20. Der, C. J., Finkel, T. & Cooper, G. M. Cell 44, 167–176 (1986).

    Article  CAS  Google Scholar 

  21. Suarez, H. G. et al. Oncogene 6, 677–679 (1991).

    CAS  Google Scholar 

  22. Landis, C. A. et al. Nature 340, 692–696 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Chung, H.-H., Benson, D. R. & Schultz, P. G. Science 259, 806–809 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Dupuis, A., Issartel, J. & Vignais, P. V. FEBS Lett. 255, 47–52 (1989).

    Article  CAS  Google Scholar 

  25. Maruta, S., Henry, G. D., Sykes, B. D. & Ikebe, M. J. biol. Chem. 268, 7093–7100 (1993).

    CAS  PubMed  Google Scholar 

  26. Stryer, L., Hurley, J. B. & Fung, B. K.-K. Meth. Enzym. 96, 617–627 (1983).

    Article  CAS  Google Scholar 

  27. Jones, T. A. et al. Acta crystallogr. A47, 110–119 (1991).

    Article  Google Scholar 

  28. Carson, M. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  29. Fourquet, J. L., Plet, F. & De Pape, F. Revue Chimie Min. 23, 183–190 (1986).

    CAS  Google Scholar 

  30. Grottel, M., Kozak, A., Maluszynska, H. & Pajak, Z. J. Phys. Condens. Mat. 4, 1837–1848 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sondek, J., Lambright, D., Noel, J. et al. GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF4. Nature 372, 276–279 (1994). https://doi.org/10.1038/372276a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing