Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A

Abstract

CYCLIC AMP is an important second messenger in the coordinated regulation of cellular metabolism. Its effects are mediated by cAMP-dependent protein kinase (PKA), which is assembled from two regulatory (R) and two catalytic (C) subunits. In mice there are four R genes (encoding RIα, RIβ, RIIα, and RIIβ) and two C genes (encoding Cα and Cβ), expressed in tissue-specific patterns1. The RIIβ isoform is abundant in brown and white adipose tissue and brain, with limited expression elsewhere. To elucidate its functions, we generated RIIβ knockout mice. Here we report that mutants appear healthy but have markedly diminished white adipose tissue despite normal food intake. They are protected against developing diet-induced obesity and fatty livers. Mutant brown adipose tissue exhibits a compensatory increase in RIα, which almost entirely replaces lost RIIβ, generating an isoform switch. The holoenzyme from mutant adipose tissue binds cAMP more avidly and is more easily activated than wild-type enzyme. This causes induction of uncoupling protein and elevations of metabolic rate and body temperature, contributing to the lean phenotype. Our results demonstrate a role for the RIIβ holoenzyme in regulating energy balance and adiposity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKnight, G. S. Curr. Opin. Cell Biol. 3, 213–217 (1991).

    Article  CAS  Google Scholar 

  2. Stein, D. T., Babcock, E. E., Malloy, C. R. & McGarry, J. D. Int. J. Obes. relat. metab. Disord. 19, 804–810 (1995).

    CAS  PubMed  Google Scholar 

  3. Himms-Hagen, J. FASEB J. 4, 2890–2898 (1990).

    Article  CAS  Google Scholar 

  4. Rothwell, N. J. & Stock, M. J. Nature 281, 31–35 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Kopeck'y, J. et al. J. biol. Chem. 265, 22204–22209 (1990).

    CAS  Google Scholar 

  6. Jequier, E. & Felber, J.-P. Bailliere's clin. Endocr. Metab. 1, 911–935 (1987).

    Article  CAS  Google Scholar 

  7. Carneheim, C., Nedergaard, J. & Cannon, B. Am. J. Physiol. 254, E155–E161 (1988).

    CAS  PubMed  Google Scholar 

  8. Zhang, Y. et al. Nature 372, 425–432 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Chen, H. et al. Cell 84, 491–495 (1996).

    Article  CAS  Google Scholar 

  10. Lee, G.-H. et al. Nature 379, 632–635 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Chua, S. C. et al. Science 271, 994–997 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Noben-Trauth, K., Naggert, J. K., North, M. A. & Nishina, P. M. Nature 380, 534–538 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Friedman, J. M. & Leibel, R. L. Cell 96, 217–220 (1992).

    Article  Google Scholar 

  14. Lowell, B. B. et al. Nature 366, 740–742 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Tecott, L. H. et al. Nature 374, 542–546 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Schneider, A., Davidson, J.J., Wullrich, A. & Kilimann, M. W. Nature Genet. 5, 381–385 (1993).

    Article  CAS  Google Scholar 

  17. Katz, E. B., Stenblt, A. E., Hatton, K., DePinho, R. & Charron, M. J. Nature 377, 151–155 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Kozak, L. P., Kozak, U. C. & Clarke, G. T. Genes Dev. 5, 2256–2264 (1991).

    Article  CAS  Google Scholar 

  19. Pelleymounter, M. A. et al. Science 269, 540–543 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Halaas, J. L. et al. Science 269, 543–546 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R. & Burn, P. Science 269, 546–549 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Flier, J. S. Cell 80, 15–18 (1995).

    Article  CAS  Google Scholar 

  23. Lafontan, M. & Berlan, M. J. Lipid Res. 34, 1057–1091 (1993).

    CAS  PubMed  Google Scholar 

  24. Arner, P. New Engl. J. Med. 333, 382–383 (1995).

    Article  CAS  Google Scholar 

  25. Surwit, R. S. et al. Metabolism 44, 645–651 (1995).

    Article  CAS  Google Scholar 

  26. Clegg, C. H., Cadd, G. G. & McKnight, G. S. Proc natn. Acad. Sci. U.S.A. 85, 3703–3707 (1988).

    Article  ADS  CAS  Google Scholar 

  27. Clegg, C. H., Correll, L. A., Cadd, G. G. & McKnight, G. S. J. biol. Chem. 262, 13111–13119 (1987).

    CAS  Google Scholar 

  28. Doskeland, S. O. & Ogreid, D. Meth. Enzym. 159, 147–150 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, D., Brandon, E., Planas, J. et al. Genetically lean mice result from targeted disruption of the RIIβ subunit of protein kinase A. Nature 382, 622–626 (1996). https://doi.org/10.1038/382622a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382622a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing