Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arrangement of rhodopsin transmembrane α-helices

Abstract

Rhodopsins1, the photoreceptors in rod cells, are G-protein-coupled receptors with seven hydrophobic segments containing characteristic conserved sequence patterns that define a large family2,3. Members of the family are expected to share a conserved transmembrane structure. Direct evidence for the arrangement of seven α-helices was obtained from a 9å projection map of bovine rhodopsin4. Structural constraints inferred from a comparison of G-protein-coupled receptor sequences were used to assign the seven hydrophobic stretches in the sequence to features in the projection map5. A low-resolution three-dimensional structure of bovine rhodopsin6 and two projection structures of frog rhodopsin7 confirmed the position of the three least tilted helices, 4, 6 and 7. A more elongated peak of density for helix 5 indicated that it is tilted or bent6,7, but helices 1, 2 and 3 were not resolved. Here we have used electron micrographs of frozen-hydrated two-dimensional frog rhodopsin crystals to determine the structure of frog rhodopsin. Seven rods of density in the map are used to estimate tilt angles for the seven helices. Density visible on the extracellular side of the membrane suggests a folded domain. Density extends from helix 6 on the intracellular side, and a short connection between helices 1 and 2, and possibly a part of the carboxy terminus, are visible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three typical lattice lines.
Figure 2: Data used to calculate the frog rhodopsin map.
Figure 3: Structure of frog rhodopsin.
Figure 4: The seven helices of the frog rhodopsin structure.

References

  1. Khorana, H. G. Rhodopsin, photoreceptor of the rod cell–an emerging pattern for structure and function. J. Biol. Chem. 267, 1–4 (1992).

    CAS  PubMed  Google Scholar 

  2. Baldwin, J. M. Structure and function of receptors coupled to G proteins. Curr. Opin. Cell Biol. 6, 180–190 (1994).

    Article  CAS  Google Scholar 

  3. Hargrave, P. A. & McDowell, J. H. Rhodopsin and phototransduction–a model system for G-protein-linked receptors. FASEB J. 6, 2323–2331 (1992).

    Article  CAS  Google Scholar 

  4. Schertler, G. F. X., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Baldwin, J. M. The probable arrangement of the helices in G-protein-coupled receptors. EMBO J. 12, 1693–1703 (1993).

    Article  CAS  Google Scholar 

  6. Unger, V. M. & Schertler, G. F. X. Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys. J. 68, 1776–1786 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Schertler, G. F. X. & Hargrave, P. A. Projection structure of frog rhodopsin in two crystal forms. Proc. Natl Acad. Sci. USA 92, 11578–11582 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Biol. 116, 9–16 (1996).

    Article  CAS  Google Scholar 

  9. Hargrave, P. A. & McDowell, J. H. Rhodopsin and phototransduction. Int. Rev. Cytol. 137B, 49–97 (1993).

    Article  Google Scholar 

  10. Yeagle, P. L., Alderfer, J. L. & Albert, A. D. Structure of the carboxy-terminal domain of bovine rhodopsin. Nature Struct. Biol. 2, 832–834 (1995).

    Article  CAS  Google Scholar 

  11. Farrens, D. L., Altenbach, C., Yang, K., Hubbell, W. L. & Khorana, H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274, 768–770 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P. & Bourne, H. R. Rhodopsin activation blocked by metal-ion-binding sites linking transmembrane helices C and F. Nature 383, 347–350 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Karnik, S. S. & Khorana, H. G. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J. Biol. Chem. 265, 17520–17524 (1990).

    CAS  PubMed  Google Scholar 

  14. Han, M. & Smith, S. O. High-resolution structural studies of the retinal–Glu113 interaction in rhodopsin. Biophys. Chem. 56, 23–29 (1995).

    Article  CAS  Google Scholar 

  15. Zhang, H. Z. et al. The location of the chromophore in rhodopsin: a photoaffinity study. J. Am. Chem. Soc. 116, 10165–10173 (1994).

    Article  CAS  Google Scholar 

  16. Kaushal, S., Ridge, K. D. & Khorana, H. G. Structure and function in rhodopsin – the role of asparagine-linked glycosylation. Proc. Natl Acad. Sci. USA 91, 4024–4028 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Altenbach, C. et al. Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. Biochemistry 35, 12470–12478 (1996).

    Article  CAS  Google Scholar 

  18. König, B. et al. Three cytoplasmic loops of rhodopsin interact with transducin. Proc. Natl Acad. Sci. USA 86, 6878–6882 (1989).

    Article  ADS  Google Scholar 

  19. Krupnick, J. G., Gurevich, V. V., Schepers, T., Hamm, H. E. & Benovic, J. L. Arrestin–rhodopsin interaction – multi-site binding delineated by peptide inhibition. J. Biol. Chem. 269, 3226–3232 (1994).

    CAS  PubMed  Google Scholar 

  20. Wilden, U., Hall, S. W. & Kühn, H. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc. Natl Acad. Sci. USA 83, 1174–1178 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Palczewski, K., Buczylko, J., Kaplan, M. W., Polans, A. S. & Crabb, J. W. Mechanism of rhodopsin kinase activation. J. Biol. Chem. 266, 12949–12955 (1991).

    CAS  PubMed  Google Scholar 

  22. Thurmond, R. L., Creuznet, C., Reeves, P. J. & Khorana, H. G. Structure and function in rhodopsin: peptide sequences in the cytoplasmic loops of rhodopsin are intimately involved in interaction with rhodopsin kinase. Proc. Natl Acad. Sci. USA 94, 1715–1720 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Franke, R. R., Sakmar, T. P., Graham, R. M. & Khorana, H. G. Structure and function in rhodopsin –studies of the interaction between the rhodopsin cytoplasmic domain and transducin. J. Biol. Chem. 267, 14767–14774 (1992).

    CAS  PubMed  Google Scholar 

  24. Farahbakhsh, Z. T., Ridge, K. D., Khorana, H. G. & Hubbell, W. L. Mapping light-dependent structural changes in the cytoplasmic loop connecting helices C and D in rhodopsin: a site-directed spin labeling study. Biochemistry 34, 8812–8819 (1995).

    Article  CAS  Google Scholar 

  25. Lamola, A. A., Yamane, T. & Zipp, A. Effects of detergents and high pressures upon the metarhodopsin I metarhodopsin II equilibrium. Biochemistry 13, 738–745 (1974).

    Article  CAS  Google Scholar 

  26. Havelka, W. A., Henderson, R. & Oesterhelt, D. Three-dimensional structure of halorhodopsin at 7 å resolution. J. Mol. Biol. 247, 726–738 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Henderson for support and help with image processing; J. H. McDowell for preparing disc membranes; and C. Villa for preparing the rhodopsin model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gebhard F. X. Schertler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unger, V., Hargrave, P., Baldwin, J. et al. Arrangement of rhodopsin transmembrane α-helices. Nature 389, 203–206 (1997). https://doi.org/10.1038/38316

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38316

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing