Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMR structure of inactivation gates from mammalian voltage-dependent potassium channels

Abstract

The electrical signalling properties of neurons originate largely from the gating properties of their ion channels. N-type inactivation of voltage-gated potassium (Kv) channels is the best-understood gating transition in ion channels, and occurs by a 'ball-and-chain' type mechanism. In this mechanism an N-terminal domain (inactivation gate), which is tethered to the cytoplasmic side of the channel protein by a protease-cleavable chain, binds to its receptor at the inner vestibule of the channel, thereby physically blocking the pore1,2. Even when synthesized as a peptide, ball domains restore inactivation in Kv channels whose inactivation domains have been deleted2,3. Using high-resolution nuclear magnetic resonance (NMR) spectroscopy, we analysed the three-dimensional structure of the ball peptides from two rapidly inactivating mammalian Kv channels (Raw3 (Kv3.4) and RCK4 (Kvl.4)). The inactivation peptide of Raw3 (Raw3-IP) has a compact structure that exposes two phosphorylation sites and allows the formation of an intramolecular disulphide bridge between two spatially close cysteine residues. Raw3-IP exhibits a characteristic surface charge pattern with a positively charged, a hydrophobic, and a negatively charged region. The RCK4 inactivation peptide (RCK4-IP) shows a similar spatial distribution of charged and uncharged regions, but is more flexible and less ordered in its amino-terminal part.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hoshi, T., Zagotta, W. N. & Aldrich, R. W. Science 250, 533–538 (1990).

    Article  ADS  CAS  Google Scholar 

  2. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Science 250, 568–571 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Ruppersberg, J. P., Frank, R., Pongs, O. & Stocker, M. Nature 353, 657–660 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Murrell-Lagnado, R. D. & Aldrich, R. W. J. Gen. Physiol. 102, 949–975 (1993).

    Article  CAS  Google Scholar 

  5. Murrell-Lagnado, R. D. & Aldrich, R. W. J. Gen. Physiol. 102, 977–1003 (1993).

    Article  CAS  Google Scholar 

  6. Schröter, K. H. et al. FEBS Lett. 278, 211–216 (1991).

    Article  Google Scholar 

  7. Covarrubias, M., Wei, A., Salkoff, L. & Vyas, T. B. Neuron 13, 1403–1412 (1994).

    Article  CAS  Google Scholar 

  8. Stephens, G. J. & Robertson, B. J. Physiol. (Lond.) 484, 1–13 (1995).

    Article  CAS  Google Scholar 

  9. Stühmer, W. et al. EMBO J. 8, 3235–3244 (1989).

    Article  Google Scholar 

  10. Ruppersberg, J. P. et al. Nature 352, 711–714 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Ottig, G., Liepinsh, E. & Wüthrich, K. Biochemistry 32, 3571–3582 (1993).

    Article  Google Scholar 

  12. Nicholls, A., Sharp, K. A. & Honig, B. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  13. Lee, C. W., Aldrich, R. W. & Gierasch, L. M. Biophys. J. 61, 379a (1993).

    Google Scholar 

  14. Fernandez-Ballester, G. et al. Biophys. J. 68, 858–865 (1995).

    Article  CAS  Google Scholar 

  15. Frank, R. & Gausepohl, H. Modern Methods in Protein Chemistry (de Gruyter, Berlin, 1988).

    Google Scholar 

  16. Jeener, J. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Auer, W. P., Bartholdi, E. & Ernst, R. R. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  ADS  Google Scholar 

  18. Davis, D. G. & Bax, A. J. Am. Chem. Soc. 107, 2820–2821 (1985).

    Article  CAS  Google Scholar 

  19. Brünger, A. T. X-PLOR Version 3.1 (Yale Univ., New Haven, 1992).

    Google Scholar 

  20. Nilges, M., Clore, G. M. & Gronenborn, A. M. FEBS Lett. 239, 129–136 (1988).

    Article  CAS  Google Scholar 

  21. Kirkpatrick, S., Gelatt, G. C. & Vecchi, M. P. Science 220, 671–680 (1983).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Neidig, K. P. et al. J. Biol. NMR 6, 255–270 (1995).

    Article  CAS  Google Scholar 

  23. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  24. Guy, H. R. & Durell, S. R. Biophys. J. 62, 238–250 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antz, C., Geyer, M., Fakler, B. et al. NMR structure of inactivation gates from mammalian voltage-dependent potassium channels. Nature 385, 272–275 (1997). https://doi.org/10.1038/385272a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385272a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing