Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness

An Erratum to this article was published on 10 July 1997

Abstract

Migration of cells in higher organisms is mediated by adhesion receptors, such as integrins, that link the cell to extracellular-matrix ligands, transmitting forces and signals necessary for locomotion1–4. Whether cells will migrate or not on a given substratum, and also their speed, depends on several variables related to integrin–ligand interactions, including ligand levels5,6, integrin levels7–9, and integrin–ligand binding affinities10–12. These and other13 factors affect the way molecular systems integrate to effect and regulate cell migration. Here we show that changes in cell migration speed resulting from three separate variables—substratum ligand level, cell integrin expression level, and integrin–ligand binding affinity—are all quantitatively predictable through the changes they cause in a single unifying parameter: short-term cell–substratum adhesion strength. This finding is consistent with predictions of a mathematical model for cell migration14. The ligand concentration promoting maximum migration speed decreases reciprocally as integrin expression increases. Increases in integrin–ligand affinity similarly result in maximal migration at reciprocally lower ligand concentrations. The maximum speed attainable, however, remains unchanged as ligand concentration, integrin expression, or integrin-ligand affinity vary, suggesting that integrin coupling with intracellular motors remains unaltered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hynes, R. O. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Cheresh, D. A. Adv. Mol. Cell Biol. 6, 225–252 (1993).

    Article  Google Scholar 

  3. Schwartz, M. A., Schaller, M. D. & Ginsberg, M. H. Annu. Rev. Cell Dev. Biol. 11, 549–599 (1995).

    Article  CAS  Google Scholar 

  4. Lauffenburger, D. A. & Horwitz, A. F. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  5. Goodman, S. L., Risse, G. & van der Mark, K. J. Cell Biol. 109, 799–809 (1989).

    Article  CAS  Google Scholar 

  6. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. A. & Lauffenburger, D. A. J. Cell Biol. 122, 729–737 (1993).

    Article  CAS  Google Scholar 

  7. Bauer, J. S., Schreiner, C. L., Giancorti, F. G., Ruoslahti, E. & Juliano, R. L. J. Cell Biol. 116, 477–487 (1992).

    Article  CAS  Google Scholar 

  8. Giancotti, F. G. & Ruoslahti, E. Cell 60, 849–859 (1990).

    Article  CAS  Google Scholar 

  9. Keely, P. J., Fong, A. M., Zutter, M. M. & Santoro, S. A. J. Cell Sci. 108, 595–607 (1995).

    CAS  PubMed  Google Scholar 

  10. Duband, J.-L., Dufour, S., Yamada, S. S., Yamada, K. M. & Thiery, J. P. J. Cell Sci. 98, 517–532 (1991).

    CAS  PubMed  Google Scholar 

  11. Kuijpers, T. W. et al. J. Exp. Med. 178, 279–284 (1993).

    Article  CAS  Google Scholar 

  12. Huttenlocher, A., Ginsberg, M. H. & Horwitz, A. F. J. Cell Biol. 134, 1551–1562 (1996).

    Article  CAS  Google Scholar 

  13. Huttenlocher, A., Sandborg, R. R. & Horwitz, A. F. Curr. Opin. Cell Biol. 7, 697–706.

  14. DiMilla, P. A., Barbee, K. & Lauffenburger, D. A. Biophys. J. 60, 15–37 (1991).

    Article  CAS  Google Scholar 

  15. Regen, C. M. & Horwitz, A. F. J. Cell Biol. 119, 1347–1359 (1992).

    Article  CAS  Google Scholar 

  16. Palecek, S. P., Schmidt, C. E., Lauffenburger, D. A. & Horwitz, A. F. J. Cell Sci. 109, 941–952 (1996).

    CAS  PubMed  Google Scholar 

  17. Bajt, M. L., Loftus, J. C., Gawaz, M. P. & Ginsberg, M. H. J. Biol. Chem. 267, 22211–22216 (1992).

    CAS  PubMed  Google Scholar 

  18. Frelinger, A. L., Du, X., Plow, E. F. & Ginsberg, M. H. J. Biol. Chem. 266, 17106–17111 (1991).

    CAS  PubMed  Google Scholar 

  19. Powers, M. J., Rodriguez, R. E. & Griffith, L. G. Biotechnol. Bioeng. (in the press).

  20. Oliver, T. N., Lee, J. & Jacobson, K. Semin. Cell Biol. 5, 139–147 (1994).

    Article  CAS  Google Scholar 

  21. Abercrombie, M., Heaysman, J. E. M. & Pegrun, S. M. Exp. Cell Res. 59, 393–398 (1970).

    Article  CAS  Google Scholar 

  22. Marks, P. W., Hendey, B. & Maxfield, F. R. J. Cell Biol. 112, 149–158 (1991).

    Article  CAS  Google Scholar 

  23. Jay, P. Y., Pham, P. A., Wong, S. A. & Elson, E. L. J. Cell Sci. 108, 387–393 (1995).

    CAS  PubMed  Google Scholar 

  24. Wessels, D., Vawter-Hugart, H., Murray, J. & Soll, D. R. Cell Motil. Cytoskeleton 27, 1–12 (1994).

    Article  CAS  Google Scholar 

  25. Cary, L. A., Chang, J. F. & Guan, J. J. Cell Sci. 109, 1787–1794 (1996).

    CAS  PubMed  Google Scholar 

  26. Varner, J. A. & Cheresh, D. A. Curr. Opin. Cell Biol. 8, 724–730 (1996).

    Article  CAS  Google Scholar 

  27. Langer, R. & Vacanti, J. Science 260, 920–926 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Argraves, W. S. et al. J. Cell Biol. 105, 1183–1190 (1987).

    Article  CAS  Google Scholar 

  29. Loftus, J. C. et al. Science 249, 915–918 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Dunn, G. A. Agents Actions (suppl.) 22, 14–33 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palecek, S., Loftus, J., Ginsberg, M. et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385, 537–540 (1997). https://doi.org/10.1038/385537a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385537a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing