Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels

Abstract

Despite recent advances in the identification of ligand-binding1,2 and voltage-sensing3 regions of ion channels, the domains that couple such regions to channel opening have not been identified. Moreover, it is uncertain whether ligand binding or depolarization are obligatory steps that must precede channel opening (according to linear reaction schemes4,5) or whether they act to stabilize the channel in an open state that can exist independently of ligand binding or depolarization (according to cyclic allosteric models6–8). By comparing ligand-independent and ligand-dependent channel openings, we now show that retinal and olfactory cyclic-nucleotide-gated channels2 are activated by a cyclic allosteric mechanism. We further show that an amino-terminal domain, distinct from the pore and ligand-binding motifs, participates in the allosteric gating transition, accounting for differences in the free energy of gating of the two channels. The allosteric transition provides an important mechanism for tuning the physiological response of ligand-binding proteins, such as cyclic-nucleotide-gated channels, to different biological signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15, 1231–1244 (1995).

    Article  CAS  Google Scholar 

  2. Zagotta, W. N. & Siegelbaum, S. A. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosd. 19, 235–263 (1996).

    Article  CAS  Google Scholar 

  3. Stuhmer, W. et al. Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597–603 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  5. del Castillo, J. & Katz, B. Interaction at end-plate receptors between different choline derivatives. Proc. R. Soc. Lond. B. 146, 369–381 (1957).

    Article  ADS  CAS  Google Scholar 

  6. Monod, J., Wyman, J. & Changeaux, J.-P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  7. Jackson, M. B. Spontaneous openings of the acetylcholine receptor channel. Proc. Natl Acad. Sri. USA 81, 3901–3904 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Picones, A. & Korenbrot, J. I. Spontaneous ligand-independent activity of the cGMP-gated ion channels in cone photoreceptors of fish. J. Physiol. (Lond.) 485, 699–714 (1995).

    Article  CAS  Google Scholar 

  9. Goulding, E. H., Tibbs, G. R. & Siegelbaum, S. A. Molecular mechanism of cyclic-nucleotide-gated channel activation. Nature 372, 369–374 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Varnum, M. D., Black, K. D. & Zagotta, W. N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15, 619–625 (1995).

    Article  CAS  Google Scholar 

  11. Gordon, S. E. & Zagotta, W. N. Localization of regions affecting an allosteric transition in cyclic nucleotide-activated channels. Neuron 14, 857–864 (1995).

    Article  CAS  Google Scholar 

  12. Kaupp, U. B. et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342, 762–766 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Shabb, J. B. & Corbin, J. D. Cyclic nucleotide-binding domains in proteins having diverse functions. J. Biol. Chem. 267, 5723–5726 (1992).

    CAS  PubMed  Google Scholar 

  14. Goulding, E. H. et al. Molecular cloning and single-channel properties of the cyclic nucleotide-gated channel from catfish olfactory neurons. Neuron 8, 45–58 (1992).

    Article  CAS  Google Scholar 

  15. Kramer, R. H., Goulding, E. H. & Siegelbaum, S. A. Potassium channel inactivation peptide blocks cyclic nucleotide-gated channels by binding to the conserved pore domain. Neuron 12, 655–662 (1994).

    Article  CAS  Google Scholar 

  16. Zagotta, W. N., Hoshi, T. & Aldrich, R. W. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science 250, 568–571 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Murrell-Lagnado, R. D. & Aldrich, R. W. Energetics of Shaker K channels block by inactivation peptides. J. Gen. Physiol. 102, 977–1003 (1993).

    Article  CAS  Google Scholar 

  18. Goulding, E. H., Tibbs, G. R., Liu, D. & Siegelbaum, S. A. Role of H5 domain in determining pore diameter and ion permeation through cyclic nucleotide-gated channels. Nature 364, 61–64 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Weber, I. T. & Steitz, T. A. Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J. Mol. Biol. 198, 311–326 (1987).

    Article  CAS  Google Scholar 

  20. Bubis, J., Neitzel, J. J., Saraswat, L. D. & Taylor, S. S. A point mutation abolishes binding of cAMP to site A in the regulatory subunit of cAMP-dependent protein kinase. J. Biol. Chem. 263, 9668–9673 (1988).

    CAS  PubMed  Google Scholar 

  21. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).

    Article  CAS  Google Scholar 

  22. Perutz, M. Mechanisms of Cooperativity and Allosteric Regulation in Proteins 10–12 (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  23. Auerbach, A., Sigurdson, W., Chen, J. & Akk, G. Voltage dependence of mouse acetylcholine receptor gating: Different charge movements in di-, mono- and unliganded receptors. J. Physiol. (Lond.) 494, 155–170 (1996).

    Article  CAS  Google Scholar 

  24. Li, M., Jan, Y. N. & Jan, L. Y. Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257, 1225–1230 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Shen, N. V., Chen, X., Boyer, M. M. & Pfaffinger, P. J. Deletion analysis of K+ channel assembly. Neuron 11, 67–76 (1993).

    Article  CAS  Google Scholar 

  26. Babila, T., Moscucci, A., Wang, H., Weaver, F. E. & Koren, G. Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. Neuron 12, 615–626 (1994).

    Article  CAS  Google Scholar 

  27. Tu, L. W. et al. Voltage-gated K+ channels contain multiple intersubunit association sites. J. Biol. Chem. 271, 18904–18911 (1996).

    Article  CAS  Google Scholar 

  28. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Liu, M., Chen, T. Y., Ahamed, B., Li, J. & Yau, K. W. Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354 (1994).

    Article  ADS  CAS  Google Scholar 

  30. Gordon, S. E., Brautigan, D. L. & Zimmerman, A. L. Protein phosphatases modulate the apparent agonist affinity of the light-regulated ion channel in retinal rods. Neuron 9, 739–748 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tibbs, G., Goulding, E. & Siegelbaum, S. Allosteric activation and tuning of ligand efficacy in cyclic-nucleotide-gated channels. Nature 386, 612–615 (1997). https://doi.org/10.1038/386612a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386612a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing