Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New drug targets for type 2 diabetes and the metabolic syndrome

Abstract

An insidious increase in features of the 'metabolic syndrome' — obesity, insulin resistance and dyslipidaemia — has conspired to produce a worldwide epidemic of type 2 insulin-resistant diabetes mellitus. Most current therapies for this disease were developed in the absence of defined molecular targets or an understanding of disease pathogenesis. Emerging knowledge of key pathogenic mechanisms, such as the impairment of glucose-stimulated insulin secretion and the role of 'lipotoxicity' as a probable cause of hepatic and muscle resistance to insulin's effects on glucose metabolism, has led to a host of new molecular drug targets. Several have been validated through genetic engineering in mice or the preliminary use of lead compounds and therapeutic agents in animals and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A better understanding of defects involving several key organ systems has led to new drug targets for type 2 diabetes.
Figure 2: Important pathways regulating glucose metabolism in the liver.
Figure 3: Biosynthesis and regulation of glucagon-like peptide 1 (GLP-1).
Figure 4: Potential mechanisms of insulin sensitization by PPARγ ligands.

Similar content being viewed by others

References

  1. Kopelman, P. G. & Hitman, G. A. Diabetes. Exploding Type II. Lancet 352, SIV5 (1998).

    Article  Google Scholar 

  2. Amos, A. F., McCarty, D. J. & Zimmet, P. The rising global burden of diabetes and its complications: estimates and projections by 2010. Diabet. Med. 14 (Suppl. 5), S5–S85 (1997).

    Google Scholar 

  3. UKPDS. UK prospective diabetes study 33: intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications with type 2 diabetes. Lancet 352, 837–853 (1998).

  4. Executive summary of the third report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. J. Am. Med. Assoc. 285, 2486–2496 (2001).

  5. Haffner, S. M., Lehto, S., Ronnemaa, T., Pyorala, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  Google Scholar 

  6. DeFronzo, R. A., Bonadonna, R. C. & Ferannini, E. Pathogenesis of NIDDM: a balanced overview. Diabet. Care 15, 318–368 (1992).

    Article  CAS  Google Scholar 

  7. Unger, R. H. Glucagon physiology and pathophysiology. N. Engl. J. Med. 285, 443–449 (1971).

    Article  CAS  Google Scholar 

  8. Roden, M. et al. The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. J. Clin. Invest. 97, 642–648 (1996).

    Article  CAS  Google Scholar 

  9. Shah, P., Vella, A., Basu, R., Schwenck, W. F. & Rizza, R. A. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 4053–4059 (2000).

    CAS  PubMed  Google Scholar 

  10. Connell, R. D. Glucagon antagonists for the treatment of type 2 diabetes. Exp. Opin. Ther. Patents 9, 701–709 (1999).

    Article  CAS  Google Scholar 

  11. Brand, C. L. et al. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycemia in moderately streptozotocin-diabetic rats. Diabetologia 37, 985–993 (1994).

    Article  CAS  Google Scholar 

  12. Unson, C. G., Andreu, D., Gurzenda, E. M. & Merrifield, R. B. Synthetic peptide antagonists of glucagon. Proc. Natl Acad. Sci. USA 84, 4083–4087 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Petersen, K., Sullivan, J., Amatruda, S. J., Livingston, J. & Shulman, G. Diabetologia 42 (Suppl.), A42 (1999).

    Google Scholar 

  14. Treadway, J. L., Mendys, P. & Hoover, D. J. Glycogen phosphorylase inhibitors for the treatment of type 2 diabetes mellitus. Exp. Opin. Invest. Drugs 10, 439–454 (2001).

    Article  CAS  Google Scholar 

  15. Magnusson, I., Rothman, D. L., Katz, I. D., Shulman, R. D. & Shulman, G. I. Increased rate of gluconeogenesis in Type II diabetes mellitus: a 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323–1327 (1992).

    Article  CAS  Google Scholar 

  16. Zhang, B. & Moller, D. E. New approaches in the treatment of type 2 diabetes. Curr. Opin. Chem. Biol. 4, 461–467 (2000).

    Article  CAS  Google Scholar 

  17. Parker, J. C. et al. Plasma glucose levels are reduced in rats and mice treated with an inhibitor of glucose-6-phosphate translocase. Diabetes 47, 1630–1636 (1998).

    Article  CAS  Google Scholar 

  18. Porte, D. J. Banting Lecture 1990: beta-cells in type II diabetes mellitus. Diabetes 40, 166–180 (1991).

    Article  Google Scholar 

  19. Drucker, D. J. The glucagon-like peptides. Endocrinology 142, 521–527 (2001).

    Article  CAS  Google Scholar 

  20. Miyawaki, K. et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide knockout mice. Proc. Natl Acad. Sci. USA 96, 14843–14847 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Edwards, C. M. et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans. Diabetes 48, 86–93 (1999).

    Article  CAS  Google Scholar 

  22. Marguet, D. et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl Acad. Sci. USA 97, 6874–6879 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Demuth, H.-U. et al. Single dose treatment of diabetic patients by the DP IV inhibitor P32/98. Diabetes 49 (Suppl. 1), A102 (2000).

    Google Scholar 

  24. Ahren, B. et al. Inhibition of DPPIV by NVP DPP728 improves metabolic control over a 4 week period in type 2 diabetes. Diabetes 50 (Suppl. 2), A104 (2001).

    Google Scholar 

  25. Zhang, B. et al. Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284, 974–977 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Goldstein, B. J., Li, P. M., Ding, W. D., Ahmad, F. & Zhang, W. R. in Vitamins and Hormones—Advances in Research and Applications Vol. 54 (ed. Litwack, J.>) 67–96 (Academic, San Diego, 1998).

    Google Scholar 

  27. Cohen, N. et al. Oral vanadyl sulphate improves hepatic and peripheral insulin sensitivity in patients with non-insulin dependent diabetes mellitus. J. Clin. Invest. 95, 2501–2509 (1995).

    Article  CAS  Google Scholar 

  28. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Bush, E. N. et al. Treatment of Zucker diabetic fatty rats with antisense oligonucleotide to phosphotyrosine phosphatase-1B for 5 weeks halts development of diabetes. Diabetes 50 (Suppl. 2), A81 (2001).

    Google Scholar 

  30. Weston, C. R. & Davis, R. J. Signaling specificity—a complex affair. Science 292, 2439–2440 (2001).

    Article  CAS  Google Scholar 

  31. Henriksen, E. J. et al. Glycogen synthase kinase-3 inhibitors potentiate glucose tolerance and muscle glycogen synthase activity in the Zucker Diabetic Fatty Rat. Diabetes 50 (Suppl. 2), A279 (2001).

    Google Scholar 

  32. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    Article  ADS  CAS  Google Scholar 

  33. Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    Article  ADS  CAS  Google Scholar 

  34. Kim, J. K. et al. Prevention of fat-induced insulin resistance by salicylate. J. Clin. Invest. 108, 437–446 (2001).

    Article  CAS  Google Scholar 

  35. Moller, D. E. Potential role of TNFα in the pathogenesis of insulin resistance and type II diabetes. Trends Endocrinol. Metab. 11, 212–217 (2000).

    Article  CAS  Google Scholar 

  36. Shulman, G. I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    Article  CAS  Google Scholar 

  37. Moller, D. E. & Van der Ploeg, L. H. T. in Handbook of Experimental Pharmacology: Obesity Pathology and Therapy (eds Lockwood, D. & Heffner, T.) 404–426 (Springer, Berlin, 2000).

    Google Scholar 

  38. Spiegelman, B. M. & Flier, J. S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    Article  CAS  Google Scholar 

  39. Klebig, M. L., Wilkinson, J. E., Geisler, J. G. & Woychik, R. P. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur. Proc. Natl Acad. Sci. USA 92, 4728–4732 (1995).

    Article  ADS  CAS  Google Scholar 

  40. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity. Cell 88, 131–141 (1997).

    Article  CAS  Google Scholar 

  41. Obici, S. et al. Central melanocortin receptors regulate insulin action. J. Clin. Invest. 108, 1079–1085 (2001).

    Article  CAS  Google Scholar 

  42. Loftus, T. M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  ADS  CAS  Google Scholar 

  43. McGarry, J. D. What if Minkowski had been ageusic? An alternative angle on diabetes. Science 258, 766–770 (1992).

    Article  ADS  CAS  Google Scholar 

  44. Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 276, E1–E18 (1999).

    CAS  PubMed  Google Scholar 

  45. Krssak, M. et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 42, 113–116 (1999).

    Article  CAS  Google Scholar 

  46. Unger, R. H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Diabetes 44, 863–870 (1995).

    Article  CAS  Google Scholar 

  47. Shimomura, I. et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol. Cell. 6, 77–86 (2000).

    Article  CAS  Google Scholar 

  48. Lee, Y. et al. Liporegulation in diet-induced obesity: the antisteatotic role of hyperleptinemia. J. Biol. Chem. 276, 5629–5635 (2000).

    Article  Google Scholar 

  49. Winder, W. W. & Hardie, D. G. The AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).

    CAS  PubMed  Google Scholar 

  50. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1179 (2001).

    Article  CAS  Google Scholar 

  51. Goodyear, L. J. AMP activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose uptake? Exercise Sport Sci. Rev. 28, 113–116 (2000).

    CAS  Google Scholar 

  52. Mu, J., Brozinick, J. T., Valladares, O., Bucan, M. & Birnbaum, M. J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell. 7, 1085–1094 (2001).

    Article  CAS  Google Scholar 

  53. Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. H. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).

    Article  ADS  CAS  Google Scholar 

  54. Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010 (2001).

    Article  ADS  CAS  Google Scholar 

  55. Berg, A. H., Combs, T., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001).

    Article  CAS  Google Scholar 

  56. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001).

    Article  CAS  Google Scholar 

  57. Willson, T. M., Brown, P. J., Sternbach, D. D. & Henke, B. R. The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43, 527–550 (2000).

    Article  CAS  Google Scholar 

  58. Moller, D. E. & Greene, D. A. Peroxisome proliferator-activated receptor (PPAR) γ agonists for diabetes. Adv. Prot. Chem. (Drug Discovery) 56, 181–212 (2001).

    Article  CAS  Google Scholar 

  59. Sohda, T. et al. Studies on antidiabetic agents. Synthesis of 5-[4-(1-methylcyclohexylmethoxy) benzyl]thiazolidine-2,4-dione (AD-3878) and its derivatives. Chem. Pharm. Bull. 30, 3580–3600 (1982).

    Article  CAS  Google Scholar 

  60. Lehmann, J. M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ. J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  Google Scholar 

  61. Berger, J. & Moller, D. E. Mechanism of PPAR action. Annu. Rev. Med. (in the press).

  62. Oakes, N. D. et al. A new antidiabetic agent, BRL 49653, reduces lipid availability and improves insulin action and glucoregulation in the rat. Diabetes 43, 1203–1210 (1994).

    Article  CAS  Google Scholar 

  63. Gerhold, D. et al. Gene expression profile of adipocyte differentiation and its regulation by PPARγ agonist. Diabetes 49 (Suppl. 1), A212 (2000).

    Google Scholar 

  64. Steppan, C. M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    Article  ADS  CAS  Google Scholar 

  65. Way, J. M. et al. Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor γ activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142, 1269–1277 (2001).

    Article  CAS  Google Scholar 

  66. Way, J. M. et al. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem. 276, 25651–25653 (2001).

    Article  CAS  Google Scholar 

  67. Seckl, J. R. & Walker, B. R. 11β-hydroxysteroid dehydrogenase Type 1—a tissue-specific amplifier of glucocorticoid action. Endocrinology 142, 1371–1376 (2001).

    Article  CAS  Google Scholar 

  68. Berger, J. et al. Peroxisome proliferator-activated receptor-gamma ligands inhibit adipocyte 11β-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem. 276, 12629–12635. (2001).

    Article  CAS  Google Scholar 

  69. Combatsiaris, T. et al. Induction of Acrp30 levels by PPARγ agonists: a potential mechanism of insulin sensitization. Diabetes 50 (Suppl. 2), A271 (2001).

    Google Scholar 

  70. Wagner, J. A. et al. Putative biomarkers to discriminate the PPARα/γ effects of fenofibrate and rosiglitazone in normal volunteers. Diabetes 50 (Suppl. 2), A134 (2001).

    Google Scholar 

  71. Baumann, C. A., Chokshi, N., Saltiel, A. R. & Ribon, V. Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J. Biol. Chem. 275, 9131–9135 (2000).

    Article  CAS  Google Scholar 

  72. Rubins, H. B. & Robins, S. J. Conclusions from the VA-HIT study. Am. J. Cardiol. 86, 543–544 (2000).

    Article  CAS  Google Scholar 

  73. Guerre-Millo, M. et al. Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638–16642 (2000).

    Article  CAS  Google Scholar 

  74. Ye, J.-M. et al. Peroxisome proliferator-activated receptor-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats. Diabetes 50 (Suppl. 2), 411–417 (2001).

    Article  CAS  Google Scholar 

  75. Murakami, K. et al. A novel insulin sensitizer acts as a coligand for peroxisome proliferator-activated receptor-alpha (PPAR-alpha) and PPAR-gamma: effect of PPAR-alpha activation on abnormal lipid metabolism in liver of Zucker fatty rats. Diabetes 47, 1841–1847 (1998).

    Article  CAS  Google Scholar 

  76. McDonnell, D. P., Clemm, D. L., Hermann, T., Goldman, M. E. & Pike, J. W. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol. Endocrinol. 9, 659–669 (1995).

    CAS  PubMed  Google Scholar 

  77. Pickup, J. & Williams, G. (eds) Textbook of Diabetes 2nd edn Vol. 1 Ch. 11 p.11.7 (Blackwell Science, London, 1997).

    Google Scholar 

Download references

Acknowledgements

I thank many colleagues at Merck Research Laboratories who have contributed to ideas discussed in this review. In particular, I also thank N. Thornberry, L. Rossetti and B. Zhang for helpful reviews of the manuscript. I apologize to numerous colleagues whose original papers were not cited owing to space limitations.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moller, D. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414, 821–827 (2001). https://doi.org/10.1038/414821a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/414821a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing