Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Seven-transmembrane-spanning receptors and heart function

Abstract

Understanding precisely how the heart can recognize and respond to many different extracellular signalling molecules, such as neurotransmitters, hormones and growth factors, will aid the identification of new therapeutic targets through which cardiovascular diseases can be combated. In recent years, we have learned more about the complex interactions that occur between the receptors and the signalling pathways of the heart and its environment. Most of these discoveries have focused on the most common type of cardiac receptor — the seven-transmembrane-spanning receptor or G-protein-coupled receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of G-protein-coupled receptor signalling.
Figure 2: The many signalling roles of seven-transmembrane-spanning receptors.
Figure 3: Attenuation of cardiac hypertrophy preserves cardiac function: reappraisal of current dogma.
Figure 4: Improved survival of transgenic mice overexpressing calsequestrin (CSQ) through inhibition of β-ARK by overexpressing the β-ARKct peptide.

Similar content being viewed by others

References

  1. Hoffman, B. B. & Lefkowitz, R. J. in Goodman and Gilman's The Pharmacological Basis of Therapeutics 9th edn (eds Hardman, J. G., Gilman, A. G. & Limbird, L. E.) 199–248 (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  Google Scholar 

  3. Molkentin, J. D. & Dorn, I. G. II Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63, 391–426 (2001).

    Article  CAS  Google Scholar 

  4. Lefkowitz, R. J. G protein-coupled receptors. III. New roles for receptor kinases and β-ARrestins in receptor signaling and desensitization. J. Biol. Chem. 273, 18677–18680 (1998).

    Article  CAS  Google Scholar 

  5. Pitcher, J. A., Freedman, N. J. & Lefkowitz, R. J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 67, 653–692 (1998).

    Article  CAS  Google Scholar 

  6. Laporte, S. A., Oakley, R. H., Holt, J. A., Barak, L. S. & Caron, M. G. The interaction of β-ARrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275, 23120–23126 (2000).

    Article  CAS  Google Scholar 

  7. DeFea, K. A. et al. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β-ARrestin-dependent scaffolding complex. Proc. Natl Acad. Sci. USA 97, 11086–11091 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Luttrell, L. M. et al. β-ARrestin-dependent formation of β2 adrenergic receptor–Src protein kinase complexes. Science 283, 655–661 (1999).

    Article  ADS  CAS  Google Scholar 

  9. DeFea, K. A. et al. β-ARrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J. Cell Biol. 148, 1267–1281 (2000).

    Article  CAS  Google Scholar 

  10. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).

    Article  CAS  Google Scholar 

  11. Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).

    Article  ADS  CAS  Google Scholar 

  12. McDonald, P. H. et al. β-ARrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290, 1574–1577 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Shenoy, S. K., McDonald, P. H., Kohout, T. A. & Lefkowitz, R. J. Regulation of receptor fate by ubiquitination of activated β2-adrenergic receptor and β-ARrestin. Science 294, 1307–1313 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Chien, K. R. Stress pathways and heart failure. Cell 98, 555–558 (1999).

    Article  CAS  Google Scholar 

  15. Esposito, G. et al. Cardiac overexpression of a Gq inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activity in in vivo pressure overload. Circulation 103, 1453–1458 (2001).

    Article  CAS  Google Scholar 

  16. Rapacciuolo, A. et al. Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. J. Am. Coll. Cardiol. 38, 876–882 (2001).

    Article  CAS  Google Scholar 

  17. Naga Prasad, S. V., Esposito, G., Mao, L., Koch, W. J. & Rockman, H. A. Gβγ-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J. Biol. Chem. 275, 4693–4698 (2000).

    Article  CAS  Google Scholar 

  18. Choi, D. J., Koch, W. J., Hunter, J. J. & Rockman, H. A. Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J. Biol. Chem. 272, 17223–17229 (1997).

    Article  CAS  Google Scholar 

  19. Knowlton, K. U. et al. The α1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J. Biol. Chem. 268, 15374–15380 (1993).

    CAS  PubMed  Google Scholar 

  20. Sugden, P. H. Signaling in myocardial hypertrophy: life after calcineurin? Circ. Res. 84, 633–646 (1999).

    Article  CAS  Google Scholar 

  21. D'Angelo, D. D. et al. Transgenic Gαq overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94, 8121–8126 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Hein, L. et al. Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl Acad. Sci. USA 94, 6391–6396 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Choukroun, G. et al. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases. J. Clin. Invest. 104, 391–398 (1999).

    Article  CAS  Google Scholar 

  24. Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Akhter, S. A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975).

    Article  CAS  Google Scholar 

  27. Levy, D., Garrison, R. J., Savage, D. D., Kannel, W. B. & Castelli, W. P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Engl. J. Med. 322, 1561–1566 (1990).

    Article  CAS  Google Scholar 

  28. Esposito, G. et al. Genetic alterations that inhibit in vivo pressure overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002).

    Article  CAS  Google Scholar 

  29. Leimbach, W. N. Jr et al. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73, 913–919 (1986).

    Article  Google Scholar 

  30. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  Google Scholar 

  31. Bristow, M. R. Why does the myocardium fail? Insights from basic science. Lancet 352 (Suppl. I), 8–14 (1998).

    Article  CAS  Google Scholar 

  32. Packer, M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20, 248–254 (1992).

    Article  CAS  Google Scholar 

  33. Ungerer, M. et al. Expression of β-ARrestins and β-adrenergic receptor kinases in the failing human heart. Circ. Res. 74, 206–213 (1994).

    Article  CAS  Google Scholar 

  34. Feldman, A. M. et al. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J. Clin. Invest. 82, 189–197 (1988).

    Article  CAS  Google Scholar 

  35. Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Zhu, W. Z. et al. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc. Natl Acad. Sci. USA 98, 1607–1612 (2001).

    Article  ADS  CAS  Google Scholar 

  37. Green, S. A., Cole, G., Jacinto, M., Innis, M. & Liggett, S. B. A polymorphism of the human β2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. J. Biol. Chem. 268, 23116–23121 (1993).

    CAS  PubMed  Google Scholar 

  38. Podlowski, S. et al. β1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? J. Mol. Med. 78, 87–93 (2000).

    Article  CAS  Google Scholar 

  39. Liggett, S. B. et al. The Ile164 β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J. Clin. Invest. 102, 1534–1539 (1998).

    Article  CAS  Google Scholar 

  40. Wagoner, L. E. et al. Polymorphisms of the β2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ. Res. 86, 834–840 (2000).

    Article  CAS  Google Scholar 

  41. Collins, F. S. Shattuck lecture—medical and societal consequences of the human genome project. N. Engl. J. Med. 341, 28–37 (1999).

    Article  CAS  Google Scholar 

  42. Epstein, S. E. & Braunwald, E. The effect of β-adrenergic blockade on patterns of urinary sodium excretion. Studies in normal subjects and in patients with heart disease. Ann. Intern. Med. 65, 20–27 (1966).

    Article  CAS  Google Scholar 

  43. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

  44. Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

  45. Packer, M. et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N. Engl. J. Med. 334, 1349–1355 (1996).

    Article  CAS  Google Scholar 

  46. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    Article  CAS  Google Scholar 

  47. Australia/New Zealand Heart Failure Research Collaborative Group. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet 349, 375–380 (1997).

  48. Esposito, G. et al. Cellular and functional defects in a mouse model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 279, H3101–H3112 (2000).

    Article  CAS  Google Scholar 

  49. Koch, W. J., Lefkowitz, R. J. & Rockman, H. A. Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000).

    Article  CAS  Google Scholar 

  50. Engelhardt, S., Hein, L., Wiesmann, F. & Lohse, M. J. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc. Natl Acad. Sci. USA 96, 7059–7064 (1999).

    Article  ADS  CAS  Google Scholar 

  51. Milano, C. A. et al. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264, 582–586 (1994).

    Article  ADS  CAS  Google Scholar 

  52. Liggett, S. B. et al. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101, 1707–1714 (2000).

    Article  CAS  Google Scholar 

  53. Rohrer, D. K. Physiological consequences of β-adrenergic receptor disruption. J. Mol. Med. 76, 764–772 (1998).

    Article  CAS  Google Scholar 

  54. Chruscinski, A. J. et al. Targeted disruption of the β2 adrenergic receptor gene. J. Biol. Chem. 274, 16694–16700 (1999).

    Article  CAS  Google Scholar 

  55. Communal, C., Singh, K., Sawyer, D. B. & Colucci, W. S. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G protein. Circulation 100, 2210–2212 (1999).

    Article  CAS  Google Scholar 

  56. Dorn, G. W. II Tepe, N. M., Lorenz, J. N., Koch, W. J. & Liggett, S. B. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc. Natl Acad. Sci. USA 96, 6400–6405 (1999).

    Article  ADS  CAS  Google Scholar 

  57. Rockman, H. A. et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl Acad. Sci. USA 95, 7000–7005 (1998).

    Article  ADS  CAS  Google Scholar 

  58. Freeman, K. et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J. Clin. Invest. 107, 967–974 (2001).

    Article  CAS  Google Scholar 

  59. Akhter, S. A. et al. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc. Natl Acad. Sci. USA 94, 12100–12105 (1997).

    Article  ADS  CAS  Google Scholar 

  60. Maurice, J. P. et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary β2-adrenergic receptor gene delivery. J. Clin. Invest. 104, 21–29 (1999).

    Article  CAS  Google Scholar 

  61. Shah, A. S. et al. Intracoronary adenovirus-mediated delivery and overexpression of the β2-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation 101, 408–414 (2000).

    Article  CAS  Google Scholar 

  62. Minamisawa, S. et al. Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell 99, 313–322 (1999).

    Article  CAS  Google Scholar 

  63. Roth, D. M. et al. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation 99, 3099–3102 (1999).

    Article  CAS  Google Scholar 

  64. Koch, W. J. et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a β-ARK inhibitor. Science 268, 1350–1353 (1995).

    Article  ADS  CAS  Google Scholar 

  65. Jaber, M. et al. Essential role of β-adrenergic receptor kinase 1 in cardiac development and function. Proc. Natl Acad. Sci. USA 93, 12974–12979 (1996).

    Article  ADS  CAS  Google Scholar 

  66. Rockman, H. A. et al. Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. Proc. Natl Acad. Sci. USA 93, 9954–9959 (1996).

    Article  ADS  CAS  Google Scholar 

  67. Rockman, H. A. et al. Control of myocardial contractile function by the level of β-adrenergic receptor kinase 1 in gene-targeted mice. J. Biol. Chem. 273, 18180–18184 (1998).

    Article  CAS  Google Scholar 

  68. Arber, S. et al. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 88, 393–403 (1997).

    Article  CAS  Google Scholar 

  69. Cho, M. C. et al. Defective β-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J. Biol. Chem. 274, 22251–22256 (1999).

    Article  CAS  Google Scholar 

  70. Freeman, K. et al. Progression from hypertrophic to dilated cardiomyopathy in mice that express a mutant myosin transgene. Am. J. Physiol. Heart Circ. Physiol. 280, H151–H159 (2001).

    Article  CAS  Google Scholar 

  71. Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J. & Rockman, H. A. Cardiac β ARK1 inhibition prolongs survival and augments β-blocker therapy in a mouse model of severe heart failure. Proc. Natl Acad. Sci. USA 98, 5809–5814 (2001).

    Article  ADS  CAS  Google Scholar 

  72. White, D. C. et al. Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl Acad. Sci. USA 97, 5428–5433 (2000).

    Article  ADS  CAS  Google Scholar 

  73. Shah, A. S. et al. In vivo ventricular gene delivery of a β-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103, 1311–1316 (2001).

    Article  CAS  Google Scholar 

  74. Naga Prasad, S. V., Barak, L. S., Rapacciuolo, A., Caron, M. G. & Rockman, H. A. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by β-adrenergic receptor Kinase 1. A role in receptor sequestration. J. Biol. Chem. 276, 18953–18959 (2001).

    Article  CAS  Google Scholar 

  75. The Xamoterol in Severe Heart Failure Study Group. Xamoterol in severe heart failure. Lancet 336, 1–6 (1990).

  76. Iaccarino, G., Tomhave, E. D., Lefkowitz, R. J. & Koch, W. J. Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 98, 1783–1789 (1998).

    Article  CAS  Google Scholar 

  77. McNamara, D. M. et al. Pharmacogenetic interactions between β-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 103, 1644–1648 (2001).7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard A. Rockman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rockman, H., Koch, W. & Lefkowitz, R. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002). https://doi.org/10.1038/415206a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415206a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing