Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conserved regulation of proximodistal limb axis development by Meis1/Hth

Abstract

Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development1. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes2,3,4. However, the molecular mechanism by which limb cells acquire their proximodistal (P–D) identity is unknown1. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus5, and resembling the distribution of the Drosophila homologues homothorax (hth)5,6 and extradenticle (exd)7; that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P–D axis of the limb.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordinated Meis/Pbx expression in the limb bud.
Figure 2: Meis1 overexpression disrupts distal limb development in the chick.
Figure 3: Evidence for the proximalization of skeletal elements in Meis1-infected limbs.
Figure 4: Alterations in distal nerve and muscle patterning in Meis1-infected limbs.
Figure 5: Ectodermal proximalization.

Similar content being viewed by others

References

  1. Johnson,R. L. & Tabin,C. J. Molecular models for vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Niswander,L., Jeffrey,S., Martin,G. R. & Tickle,C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Laufer,E., Nelson,C. E., Johnson,R. L., Morgan,B. A. & Tabin,C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79, 993–1003 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Parr,B. A. & McMahon,A. P. Dorsalizing signal Wnt-7a required for normal polarity of D–V and A–P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. González-Crespo,S. et al. Antagonism between extradenticle fucntion and Hedgehog signalling in the developing limb. Nature 394, 196–200 (1998).

    Article  ADS  PubMed  Google Scholar 

  6. Abu-Shaar,M. & Mann,R. S. Generation of multiple antagonistic domains along the proximodistal axis during Drosophila leg development. Development 125, 3821–3830 (1998).

    CAS  PubMed  Google Scholar 

  7. González-Crespo,S. & Morata,G. Genetic evidence for the subdivision of the arthropod limb into cosopodite and telopodite. Development 122, 3921–3928 (1996).

    PubMed  Google Scholar 

  8. Summerbell,D., Lewis,J. & Wolpert,L. Positional information in chick limb morphogenesis. Nature 224, 492–496 (1973).

    Article  ADS  Google Scholar 

  9. Moskow,J. J., Bullrich,F., Huebner,K., Daar,I. O. & Buchberg,A. M. Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol. Cell. Biol. 15, 5434–5443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura,T., Jenkins,N. A. & Copeland,N. G. Identification of a new family of Pbx-related homeobox genes. Oncogene 13, 2235–2242 (1996).

    CAS  PubMed  Google Scholar 

  11. Cecconi,F., Proetzel,G., Alvarez-Bolado,G., Jay,D. & Gruss,P. Expression of Meis2, a Knotted-related murine homeobox gene, indicates a role in the differentiation of the forebrain and the somitic mesoderm. Dev. Dyn. 210, 184–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Oulad-Abdelghani,M. et al. Meis2, a novel mouse Pbx-related homeobox gene induced by retinoic acid during differentiation of P19 embryonal carcinoma cells. Dev. Dyn. 210, 173–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Berthelsen,J., Kilstrup-Nielsen,C., Blasi,F., Mavilio,F. & Zappavigna,V. The subcellular localization of PBX1 and EXD proteins depends on nuclear import and export signals and is modulated by association with PREP1 and HTH. Genes Dev. 13, 946–953 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abu-Shaar,M., Ryoo,H. D. & Mann,R. S. Control of the nuclear localization of extradenticle by competing nuclear import and export signals. Genes Dev. 13, 935–945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pai,C. Y. et al. The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev. 12, 435–446 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rieckhof,G. E., Casares,F., Ryoo,H. D., Abu-Shaar,M. & Mann,R. S. Nuclear translocation of extradenticle requires homothorax, which encodes an extradenticle-related homeodomain protein. Cell 91, 171–183 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Kamps,M. P., Murre,C., Sun,X. & Baltimore,D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60, 547–555 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Nourse,J. et al. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60, 535–545 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Rowe,D. A. & Fallon,J. F. The proximodistal determination of skeletal parts in the developing chick leg. J. Embryol. Exp. Morphol. 68, 1–7 (1982).

    CAS  PubMed  Google Scholar 

  20. Nelson,C. E. et al. Analysis of Hox gene expression in the chick limb bud. Development 122, 1449–1466 (1996).

    CAS  PubMed  Google Scholar 

  21. Zakany,J. & Duboule,D. Hox genes in digit development and evolution. Cell. Tissue Res. 296, 19–25 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Morgan,B. A., Izpisúa-Belmonte,J. C., Duboule,D. & Tabin,C. J. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 358, 236–239 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Capdevila,J., Tsukui,T., Rodríguez-Esteban,C., Zappavigna,V. & Izpisúa-Belmonte,J. C. Regulatory interactions between the proximal determinant Meis2 and distal antagonism of BMP by Gremlin Control Vertebrate limb outgrowth. Mol. Cell (in the press).

  24. Wu,J. & Cohen,S. M. Proximodistal axis formation in the Drosophila leg: subdivision into proximal and distal domains by Homothorax and Distal-less. Development 126, 109–117 (1999).

    CAS  PubMed  Google Scholar 

  25. Brand,A. H. & Perrimon,N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  26. Goto,S. & Hayashi,S. Proximal to distal cell communication in the Drosophila leg provides a basis for an intercalary mechanism of limb patterning. Development 126, 3407–3413 (1999).

    CAS  PubMed  Google Scholar 

  27. Shubin,N., Tabin,C. & Carroll,S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Logan,M. & Tabin,C. Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14, 407–420 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wilkinson,D. G. & Nieto,M. A. Detection of messenger RNA by in situ hybridization to tissue sections and whole mount. Methods Enzymol. 225, 361–373 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Calleja,M., Moreno,E., Pelaz,S. & Morata,G. Visualization of gene expression in living adult Drosophila. Science 274, 252–255 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Celis,J. F. & Bray,S. Feed back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing. Development 124, 3241–3251 (1997).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Bovolenta and Á. Nieto for advice and help during the development of this project; Á. Nieto, D. R. Jones and C. Mark for critical reading of the manuscript; J. C. Izpisúa-Belmonte for unpublished results; and N. Copeland, J. C. Izpisúa-Belmonte, R. S. Mann and C. Tabin for probes. N.M. is a recipient of an ETH-CSIC collaborative fellowship and an EU Marie Curie predoctoral fellowship. N.A. and G.M. are supported by grants from the Spanish Dirección General de Investigación Cientifica y Técnica and Human Frontiers Program. The Department of Immunology and Oncology was founded and is supported by the Spanish Research Council (CSIC) and Pharmacia & Upjohn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mercader, N., Leonardo, E., Azpiazu, N. et al. Conserved regulation of proximodistal limb axis development by Meis1/Hth. Nature 402, 425–429 (1999). https://doi.org/10.1038/46580

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46580

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing