Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition

Abstract

Activation of the tyrosine kinase Src potentiates NMDA-receptor currents, which is thought to be necessary for induction of hippocampal long-term potentiation. Although the carboxy(C)-terminal domain of the NR2A subunit contains potential tyrosine phosphorylation sites, the mechanism by which Src modulates synaptic plasticity and NMDA receptor currents is not fully understood. Here we present evidence from NR1 mutants and splice variants that Src potentiates NMDA-receptor currents by reducing the tonic inhibition of receptors composed of NR1 and NR2A subunits by extracellular zinc. Using site-directed mutagenesis, we have identified three C-terminal tyrosine residues of NR2A that are required for Src's modulation of the zinc sensitivity of NMDA receptors. Our data link two modulatory sites of NMDA receptors that were previously thought to be independent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Src potentiates NR1/NR2A receptors by reducing tonic zinc inhibition.
Figure 2: Src shifts IC50 for the voltage-independent zinc site of NR1/NR2A receptors.
Figure 3: Potentiation of NMDA-receptor currents by Src correlates with the amount of tonic inhibition of NR1/NR2A receptors by zinc.
Figure 4: Point mutations of tyrosine residues in NR2A C-terminal block Src's potentiation of NR1/NR2A currents and relief of zinc inhibition.
Figure 5: EDTA and Src increase the time constant of the slower component of NMDA currents.
Figure 6: Src reduces zinc sensitivity of NR1/NR2B receptors.

Similar content being viewed by others

References

  1. O'Dell, T.J., Kandel, E.R. & Grant, S.G.N. Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560 (1991).

    Article  CAS  Google Scholar 

  2. Grant, S.G.N. et al. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903– 1910 (1992).

    Article  CAS  Google Scholar 

  3. Lu, Y.M., Roder, J.C., Davidow, J. & Salter, M.W. Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1368 (1998).

    Article  CAS  Google Scholar 

  4. Wang, Y.T. & Salter, M.W. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369, 233–235 (1994).

    Article  CAS  Google Scholar 

  5. Köhr, G. & Seeburg, P.H. Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the Src family. J. Physiol. (Lond.) 492, 445– 452 (1996).

    Article  Google Scholar 

  6. Yu, X.M., Askalan, R., Keil, G.J. & Salter, M.W. NMDA channel regulation by channel-associated protein tyrosine kinase Src. Science 275, 674–678 (1997).

    Article  CAS  Google Scholar 

  7. Sprengel, R. et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92, 279–289 (1998).

    Article  CAS  Google Scholar 

  8. Miyakawa, T. et al. Fyn-kinase as a determinant of ethanol sensitivity: Relation to NMDA-receptor function. Science 278, 698– 701 (1997).

    Article  CAS  Google Scholar 

  9. Nowak, L., Bregestovski, P., Ascher, P., Herbert, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462– 465 (1984).

    Article  CAS  Google Scholar 

  10. Mayer, M.L., Westbrook, G.L. & Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).

    Article  CAS  Google Scholar 

  11. Westbrook, G.L. & Mayer, M.L. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643 ( 1987).

    Article  CAS  Google Scholar 

  12. Peters, S., Koh, J. & Choi, D.W. Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons . Science 236, 589–593 (1987).

    Article  CAS  Google Scholar 

  13. Traynelis, S.T., Hartley, M. & Heinemann, S.F. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876 (1995).

    Article  CAS  Google Scholar 

  14. Smart, T.G., Xie, X. & Krishek, B.J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 42, 393– 441 (1994).

    Article  CAS  Google Scholar 

  15. Mayer, M.L., Vyklicky, L. Jr & Westbrook, G.L. Modulation of excitatory amino acid receptors by group IIB metal cations in cultured mouse hippocampal neurones. J. Physiol. (Lond.) 415, 329–350 (1989).

    Article  CAS  Google Scholar 

  16. Christine, C.W. & Choi, D.W. Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J. Neurosci. 10, 108–116 (1990).

    Article  CAS  Google Scholar 

  17. Legendre, P. & Westbrook, G.L. The inhibition of single N-methyl-D-aspartate-activated channels by zinc ions on cultured rat neurones. J. Physiol. (Lond.) 429, 429–449 ( 1990).

    Article  CAS  Google Scholar 

  18. Paoletti, P., Ascher, P. & Neyton, J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725 ( 1997).

    Article  CAS  Google Scholar 

  19. Williams, K. Separating dual effects of zinc at recombinant N-methyl-D-aspartate receptors. Neurosci. Lett. 215, 9–12 (1996).

    Article  CAS  Google Scholar 

  20. Chen, N., Moshaver, A. & Raymond, L.A. Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51, 1015–1023 (1997).

    Article  CAS  Google Scholar 

  21. Traynelis, S.F., Burgess, M.F., Zheng, F., Lyuboslavsky, P. & Powers, J.L. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. (in press).

  22. Bogden, J.D., Troiano, R.A. & Joselow, M.M. Copper, zinc, magnesium, and calcium in plasma and cerebrospinal fluid of patients with neurological diseases. Clin. Chem. 23, 485–489 (1977).

    CAS  PubMed  Google Scholar 

  23. Li, C., Peoples, R.W. & Weight, F.F. Proton potentiation of ATP-gated ion channel responses to ATP and Zn2+ in rat nodose ganglion neurons. J. Neurophysiol. 76, 3048–3058 (1996).

    Article  CAS  Google Scholar 

  24. Sullivan, J.M. et al. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13 , 929–936 (1994).

    Article  CAS  Google Scholar 

  25. Kemp, B.E. & Pearson, R.B. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 15, 342– 346 (1990).

    Article  CAS  Google Scholar 

  26. Edmonds, B. & Colquhoun, D. Rapid decay of averaged single-channel NMDA receptor activations recorded at low agonist concentration. Proc. R. Soc. Lond. B 250, 279–286 (1992).

    Article  CAS  Google Scholar 

  27. Traynelis, S.T. & Wahl, P. Control of rat GluR6 glutamate receptor open probability by protein kinase A and calcineurin. J. Physiol. 503, 513–531 ( 1997).

    Article  CAS  Google Scholar 

  28. Lau, L.-F. & Huganir, R.L. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 270, 20036–20041 (1995).

    Article  CAS  Google Scholar 

  29. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S.A. & Schlessinger, J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547–550 (1996).

    Article  CAS  Google Scholar 

  30. Ehlers, M.D., Zhang, S., Bernhardt, J.P. & Huganir, R.L. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit . Cell 84,745–755 (1996).

    Article  CAS  Google Scholar 

  31. Chen, L. & Huang, L.-Y.M. Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356, 521–523 ( 1992).

    Article  CAS  Google Scholar 

  32. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  33. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression . Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  34. Bers, D., Patton, C. & Nuccitelli, R. A practical guide to the preparation of Ca buffers. Methods Cell Biol. 40, 3–29 (1994).

    Article  CAS  Google Scholar 

  35. Brooks, S.P.J. & Storey, K.B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal. Biochem. 201, 119–126 ( 1992).

    Article  CAS  Google Scholar 

  36. Hamill, O., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100 ( 1981).

    Article  CAS  Google Scholar 

  37. Emini, E.A., Hughes, J.V., Perlow, D.S. & Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 55, 836–839 ( 1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.F.Heinemann for NR1 and NR2B cDNAs, N. Nakanishi for NR2A cDNA and M. Chalfie, M. Mayer and P. Seeburg for green fluorescent protein plasmid. We also thank P. Ascher, J. Neyton and I. Mody for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, F., Gingrich, M., Traynelis, S. et al. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1, 185–191 (1998). https://doi.org/10.1038/634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing