Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’

Abstract

‘Silent synapses’ show responses from high-affinity NMDA receptors (NMDARs) but not low-affinity AMPA receptors (AMPARs), but gain AMPAR responses upon long-term potentiation (LTP). Using the rapidly reversible NMDAR antagonist l-AP5 to assess cleft glutamate concentration ([glu]cleft), we found that it peaked at 170 μM at silent neonatal synapses, but greatly increased after potentiation. Cyclothiazide (CTZ), a potentiator of AMPAR, revealed slowly rising AMPA EPSCs at silent synapses; LTP shortened their rise times. Thus, LTP at silent synapses increased rate-of-rise and peak amplitude of [glu]cleft. Release probability reported by NMDARs remained unchanged during LTP, implying that [glu]cleft increases arose from immediately presynaptic terminals. Our data suggest that changes in the dynamics of fusion-pore opening contribute to LTP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding and unbinding kinetics of l-AP5 on NMDA receptors in outside-out patches.
Figure 2: l-AP5 (250 μM) completely inhibited NMDAR-mediated synaptic responses at silent synapses but lost effectiveness after pairing.
Figure 3: CTZ does not alter glutamate transporter currents recorded from astrocytes in stratum radiatum of area CA1, but enhances AMPA receptor function.
Figure 4: Potentiation of receptor function by CTZ revealed small, often slowly rising AMPAR-mediated synaptic responses from silent synapses.
Figure 5: In the presence of CTZ, pairing-induced potentiation altered EPSC kinetics.

Similar content being viewed by others

References

  1. Bliss T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  CAS  Google Scholar 

  2. Kullmann, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002 (1995).

    Article  CAS  Google Scholar 

  3. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  4. Liao, D., Hessler, N. A. & Malinow, R. A ctivation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    Article  CAS  Google Scholar 

  5. Isaac, J. T., Nicoll, R. A. & Malenka, R. C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    Article  CAS  Google Scholar 

  6. Durand, G. M., Kovalchuk, Y. & Konnerth, A. Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381, 71–75 (1996).

    Article  CAS  Google Scholar 

  7. Nüsser, Z., et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    Article  Google Scholar 

  8. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  9. Malgaroli, A., et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268, 1624–1628 (1995).

    Article  CAS  Google Scholar 

  10. Ryan, T. A., Ziv, N. E. & Smith, S. J. Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron 17, 125–134 (1996).

    Article  CAS  Google Scholar 

  11. Ma, L., Zablow, L., Kandel, E. R. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nat. Neurosci. 2, 24–30 (1999).

    Article  CAS  Google Scholar 

  12. Patneau, D. K. & Mayer, M. L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-d-asartate and quisqualate receptors. J. Neurosci. 10, 2385–2399 (1990).

    Article  CAS  Google Scholar 

  13. Perkel, D. J. & Nicoll, R. A. Evidence of all-or-none regulation of neurotransmitter release: implications for long-term potentiation. J. Physiol. (Lond.) 471, 481–500.

  14. Kullmann, D. M. Excitatory synapses. Neither too loud nor too quiet. Nature 13, 111–112 (1999).

    Article  Google Scholar 

  15. Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992).

    Article  CAS  Google Scholar 

  16. Kullmann, D. M. & Asztely, F. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci. 21, 8–14 (1998).

    Article  CAS  Google Scholar 

  17. Bruns, D. & Jahn, R. Real-time measurement of transmitter release from single synaptic vesicles. Nature 377, 62–65 (1995).

    Article  CAS  Google Scholar 

  18. Zhou, Z, Misler, S. & Chow, R. H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543–1552 (1996).

    Article  CAS  Google Scholar 

  19. Spruce, A. E., Breckenridge, L. J., Lee, A. K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron 4, 643–654 (1990).

    Article  CAS  Google Scholar 

  20. Lollike, K., Borregaard, N. & Lindau, M. Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Biophys. J. 75, 53–59 (1998).

    Article  CAS  Google Scholar 

  21. Tong, G. & Jahr, C. E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    Article  CAS  Google Scholar 

  22. Clements, J. D. Transmitter timecourse in the synaptic cleft: its role in central synaptic function. Trends Neurosci. 19, 163–171 (1996).

    Article  CAS  Google Scholar 

  23. Olverman, H. J., Jones, A. W., Mewett, K. N. & Watkins, J. C. Structure/activity relations of N-methyl-d-aspartate receptor ligands as studied by their inhibition of [3H]D-2–amino-5–phosphonopentanoic acid binding in rat brain membranes. Neuroscience 26, 17–31 (1988).

    Article  CAS  Google Scholar 

  24. Rumpel, S., Hatt, H. & Gottmann, K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. J. Neurosci. 18, 8863–8874 (1998).

    Article  CAS  Google Scholar 

  25. Malinow, R. & Tsien, R. W. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346, 177–180 (1990).

    Article  CAS  Google Scholar 

  26. Diamond, J. S. & Jahr, C. E. Transporters buffer synaptically released glutamate on a submillisecond time scale. J. Neurosci. 17, 4672–4687 (1997).

    Article  CAS  Google Scholar 

  27. Rosenmund, C., Stern-Bach, Y. & Stevens, C. F. The tetrameric structure of a glutamate receptor channel. Science 280, 1596–1599 (1998).

    Article  CAS  Google Scholar 

  28. Dzubay, J. A. & Jahr, C. E. The concentration of synaptically released glutamate outside of the climbing fiber-purkinje cell synaptic cleft. J. Neurosci. 19, 5265–5274 (1999).

    Article  CAS  Google Scholar 

  29. Partin, K. M., Patneau, D. K., Winters, C. A., Mayer, M. L. & Buonanno, A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069–1082 (1993).

    Article  CAS  Google Scholar 

  30. Yamada, K. A. & Tang, C. M Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J. Neurosci. 13, 3904–3915 (1993).

    Article  CAS  Google Scholar 

  31. Diamond, J. S. & Jahr, C. E. Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC. Neuron 15, 1097–1107 (1995).

    Article  CAS  Google Scholar 

  32. Bellingham, M. C. & Walmsley, B. A novel presynaptic inhibitory mechanism underlies paired pulse depression at a fast central synapse. Neuron 23, 159–170 (1999).

    Article  CAS  Google Scholar 

  33. Lüscher, C. Malenka, R. C. & Nicoll, R. A. Monitoring glutamate release during LTP with glial transporter currents. Neuron 21, 435–441 (1998).

    Article  Google Scholar 

  34. Diamond, J. S., Bergles, D. E. & Jahr, C. E. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 21, 425–433 (1998).

    Article  CAS  Google Scholar 

  35. Colquhoun, D., Jonas, P. & Sakmann, B. Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J. Physiol. (Lond.) 458, 261–287 (1992).

    Article  CAS  Google Scholar 

  36. Bekkers, J. M. & Stevens, C. F. Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs. J. Neurophysiol. 75, 1250–1255 (1996).

    Article  CAS  Google Scholar 

  37. Glavinovic M. I. & Rabie, H. R. Monte Carlo simulation of spontaneous miniature excitatory postsynaptic currents in rat hippocampal synapse in the presence and absence of desensitization. Pflugers Arch. 435, 193–202 (1998).

    Article  CAS  Google Scholar 

  38. Pothos, E. N., Przedborski, S., Davila, V., Schmitz, Y. & Sulzer, D. D2-like dopamine autoreceptor activation reduces quantal size in PC12 cells. J. Neurosci. 18, 4106–4118 (1998).

    Article  CAS  Google Scholar 

  39. Rossi, D. J. & Hamann, M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity alpha6 subunit GABA(A) receptors and glomerular geometry. Neuron 20, 783–795 (1998).

    Article  CAS  Google Scholar 

  40. Scepek, S., Coorssen, J. R. & Lindau, M. Fusion pore expansion in horse eosinophils is modulated by Ca2+ and protein kinase C via distinct mechanisms. EMBO J. 17, 4340–4346 (1998).

    Article  CAS  Google Scholar 

  41. Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    Article  CAS  Google Scholar 

  42. Bekkers, J. M. & Stevens, C. F. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346, 724–729 (1990).

    Article  CAS  Google Scholar 

  43. Malgaroli, A & Tsien, R. W. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons. Nature 357, 134–139 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Silvio Conte-NIMH Center for Neuroscience Research at Stanford (R.W.T.), a Dean's Fellowship (S.C.) and a fellowship of the Boehringer Ingelheim Fonds (J.K.). We thank D.V. Madison and P. Mermelstein for comments on the manuscript, N. C. Harata and E. T. Kavalali for discussions and D. Wheeler and D. Profitt for technical support. We are grateful to other members of the Tsien lab for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Tsien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Klingauf, J. & Tsien, R. Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’. Nat Neurosci 3, 330–336 (2000). https://doi.org/10.1038/73895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing