Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of the familial cylindromatosis tumour-suppressor gene

Abstract

Familial cylindromatosis is an autosomal dominant genetic predisposition to multiple tumours of the skin appendages. The susceptibility gene (CYLD) has previously been localized to chromosome 16q and has the genetic attributes of a tumour-suppressor gene (recessive oncogene). Here we have identified CYLD by detecting germline mutations in 21 cylindromatosis families and somatic mutations in 1 sporadic and 5 familial cylindromas. All mutations predict truncation or absence of the encoded protein. CYLD encodes three cytoskeletal-associated-protein–glycine-conserved (CAP–GLY) domains, which are found in proteins that coordinate the attachment of organelles to microtubules. CYLD also has sequence homology to the catalytic domain of ubiquitin carboxy-terminal hydrolases (UCH).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Familial cylindromatosis.
Figure 2: Contig of PACs for the minimum linked interval between markers CDRP39 and CDRP21.
Figure 3: CSGE shifts of the first 13 germline mutations detected.
Figure 4: Alignment of CYLD with putative
Figure 5: Duplicate RT–PCR analyses of CYLD in a range of tissues using primers in exons 6 and 9.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Abenoza, P. & Ackerman, A.B. Neoplasms with Eccrine Differentiation (Lea and Febiger, Philadelphia, 1990).

    Google Scholar 

  2. van Balkom, I.D. & Hennekam, R.C. Dermal eccrine cylindromatosis. J. Med. Genet. 31, 321–324 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gerretsen, A.L., Beemer, F.A., Deenstra, W., Hennekam, F.A. & van Vloten, W.A. Familial cutaneous cylindromas: investigations in five generations of a family. J. Am. Acad. Dermatol. 33, 199–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Biggs, P.J. et al. Familial cylindromatosis (turban tumour syndrome) gene localised to chromosome 16q12–q13: evidence for its role as a tumour suppressor gene. Nature Genet. 11, 441–443 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Verhoef, S. et al. Familial cylindromatosis mimicking tuberous sclerosis complex and confirmation of the cylindromatosis locus, CYLD1, in a large family. J. Med. Genet. 35, 841–845 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomson, S.A., Rasmussen, S.A., Zhang, J. & Wallace, M.R. A new hereditary cylindromatosis family associated with CYLD1 on chromosome 16. Hum. Genet. 105, 171–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, M. et al. Linkage and LOH studies in 19 cylindromatosis families show no evidence of genetic heterogeneity and refine the CYLD locus on chromosome 16q12–q13. Hum. Genet. 106, 58–65 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Biggs, P.J., Chapman, P., Lakhani, S.R., Burn, J. & Stratton, M.R. The cylindromatosis gene (CYLD) on chromosome 16q may be the only tumour suppressor gene involved in the development of cylindromas. Oncogene 12, 1375–1377 (1996).

    CAS  PubMed  Google Scholar 

  9. Ioannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Futreal, A. et al. Isolation of a diverged homeobox gene, MOX1, from the BRCA1 region on 17q21 by solution hybrid capture. Hum. Mol. Genet. 3, 1359–1364 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Ganguly, A., Rock, M.J. & Prockop, D.J. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes. Proc. Natl Acad. Sci. USA 90, 10325–10329 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chase, D.S. et al. The North Cumbria Community Genetics Project. J. Med. Genet. 35, 413–416 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 5, 355–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Riehemann, K. & Sorg, C. Sequence homologies between four cytoskeleton-associated proteins. Trends Biochem. Sci. 18, 82–83 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994)

    Article  CAS  PubMed  Google Scholar 

  16. D'Andrea, A. & Pellman, D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33, 337–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Pierre, P., Scheel, J., Rickard, J.E. & Kreis, T.E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Bilbe, G. et al. Restin: a novel intermediate filament-associated protein highly expressed in the Reed-Sternberg cells of Hodgkin's disease. EMBO J. 11, 2103–2113 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waterman-Storer, C.M. & Holzbaur, E.L. The product of the Drosophila gene, Glued, is the functional homologue of the p150Glued component of the vertebrate dynactin complex. J. Biol. Chem. 271, 1153–1159 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Berlin, V., Styles, C.A. & Fink, G.R. BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J. Cell Biol. 111, 2573–2586 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Pellman, D., Bagget, M., Tu, Y.H. & Fink, G.R. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 130, 1373–1385 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. Pierre, P., Pepperkok, R. & Kreis, T.E. Molecular characterization of two functional domains of CLIP-170 in vivo. J. Cell. Sci. 107, 1909–1920 (1994).

    CAS  PubMed  Google Scholar 

  23. Karki, S. & Holzbaur, E.L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Dujardin, D. et al. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141, 849–862 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kahana, J.A. et al. The yeast dynactin complex is involved in partitioning the mitotic spindle between mother and daughter cells during anaphase B. Mol. Biol. Cell 9, 1741–1756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hershko, A. Roles of ubiquitin-mediated proteolysis in cell cycle control. Curr. Opin. Cell Biol. 9, 788–799 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Antonarakis, S.E. Recommendations for a nomenclature system for human gene mutations. Hum. Mutat. 11, 1–3 (1998)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for cooperation; the Institute of Cancer Research Gene Cloning Laboratory and R. Warren for assistance; D. Cooke, P. Itin, D. Schorderet and the many other clinicians for ascertaining families; HGMP for provision of PAC library filters; North Cumbria Community Genetics Project for control DNA samples; and E. Peacock for help in preparing the manuscript. G.T., P.C. and J.B. are members of the ICRF Clinical Genetics Network. The work was supported by the Cancer Research Campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Stratton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bignell, G., Warren, W., Seal, S. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet 25, 160–165 (2000). https://doi.org/10.1038/76006

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing