Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells

Abstract

Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass1,2 or developing germ cells3 can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates, specifically, hematopoietic, mesodermal, and neurectodermal4,5,6,7. In this study, we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore, we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells, expanded these cells and promoted their differentation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo, and potentially for understanding and treating neurodegenerative and psychiatric diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ES cells progressively differentiate into mesencephalic stem cells.
Figure 2: Mesencephalic precursors differentiate into TH+ neurons.
Figure 3: The effect of external signals on the yield of neurons that are TH+ and secrete dopamine.
Figure 4: Synaptic properties of ES-derived TH+ neurons.
Figure 5: Characterization of serotonin-positive neurons.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  2. Reubinoff, B. et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  3. Shamblott, M.J. et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA 95, 13726–13731 (1998).

    Article  CAS  Google Scholar 

  4. Klug, M.G. et al., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–24 (1996).

    Article  CAS  Google Scholar 

  5. Keller, G. et al. Overexpression of HOX11 leads to the immortalization of embryonic precursors with both primitive and definitive hematopoietic potential. Blood 92, 877–87 (1998).

    CAS  PubMed  Google Scholar 

  6. Wobus, A.M. & Boheler, K.R. Embryonic stem cells as developmental model in vitro. Cells Tiss. Org. 165, 129–30 (1999).

    Article  CAS  Google Scholar 

  7. Bain, G. et al. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342–357 (1995).

    Article  CAS  Google Scholar 

  8. Deacon, T. et al. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp. Neurol. 149, 28–41 (1998).

    Article  CAS  Google Scholar 

  9. Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  Google Scholar 

  10. Okabe, S. et al. Development of neuronal precursor cells and functional potmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  Google Scholar 

  11. Olanow, C.W., Kordower, J.H. & Freeman, T.B. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci. 19, 102–109 (1996).

    Article  CAS  Google Scholar 

  12. Breier, A., et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 94, 2569–2574 (1997).

    Article  CAS  Google Scholar 

  13. Gramm, L.F. Drug therapy: fluoxetine. N. Engl. J. Med. 331, 1354 (1994).

    Article  Google Scholar 

  14. Volkow, N.D. et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386, 830–833 (1997).

    Article  CAS  Google Scholar 

  15. Volkow, N.D. et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386, 827–830 (1997).

    Article  CAS  Google Scholar 

  16. Simeone, A. Otx1 and Otx2 in the development and evolution of the mammalian brain. EMBO J. 17, 6790–6798 (1998).

    Article  CAS  Google Scholar 

  17. Acampora, D. & Simeone, A. Understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci. 22, 116–122 (1999).

    Article  CAS  Google Scholar 

  18. Stoykova, A. & Gruss, P. Roles of Pax genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14, 1395–1412 (1994).

    Article  CAS  Google Scholar 

  19. Rowitch, D.H. & McMahon, A.P. Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech Dev. 52, 3–8 (1995).

    Article  CAS  Google Scholar 

  20. Lendahl, U., Zimmerman, L.B. & McKay, R.D.G. CNS stem cells express a new class of intermediate filament proteins. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  21. Frederiksen, K. & McKay, R.D.G. Proliferation and differentiation of rat neuroephitelial precursor cells in vivo. J. Neurosci. 8, 1144–1151 (1988).

    Article  CAS  Google Scholar 

  22. Johe, K. et al. Single factors direct the differentiation of stem cells from the fetal and adult nervous system. Genes Dev. 10, 3129–3140 (1996).

    Article  CAS  Google Scholar 

  23. Vicario-Abejón, C. et al. Functions of basic-fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15, 105–114 (1995).

    Article  Google Scholar 

  24. Studer, L., Tabar, V. & McKay, R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat. Neurosci. 1, 290–295 (1998).

    Article  CAS  Google Scholar 

  25. Studer, L., Tabar, V. & McKay, R.D.G. Survival of expanded dopaminergic precursors is critical for clinical trials. Nat. Neurosci. 1, 537 (1998).

    Article  CAS  Google Scholar 

  26. Ye, W. et al. FGF and SHH signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766 (1998).

    Article  CAS  Google Scholar 

  27. Branton, R.L., Love, R.M. & Clarke, D.J. cAMP included during cell suspension preparation improves survival of dopaminergic neurons in vitro. Neuroreport 9, 3223–3227 (1998).

    Article  CAS  Google Scholar 

  28. Kalir, H.H. & Mytilineou, C. Ascorbic acid in mesencephalic cultures: effects on dopaminergic neuron development. J. Neurochem. 57, 458–464 (1991).

    Article  CAS  Google Scholar 

  29. Brustle, O. et al. In vitro-generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA 94, 14809–14814 (1997).

    Article  CAS  Google Scholar 

  30. Spenger, C. et al. Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Exp. Brain Res. 112, 47–57 (1996).

    Article  CAS  Google Scholar 

  31. Wagner, J. et al. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat. Biotechnol. 17, 653–659 (1999).

    Article  CAS  Google Scholar 

  32. Joyner, A.L. Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet. 12, 15–20 (1996).

    Article  CAS  Google Scholar 

  33. Studer, L. et al. Noninvasive dopamine determination by reversed phase HPLC in the medium of free-floating roller tube cultures of rat fetal ventral mesencephalon: a tool to assess dopaminergic tissue prior to grafting. Brain Res. Bull. 41, 143–150 (1996).

    Article  CAS  Google Scholar 

  34. Auerbach, J.M., Eiden, M.V. & McKay, R.D.G. Tranplanted CNS stem cells form functional synapses in vivo. Eur. J. Neurosci. 12, 1696–1704 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The R1 ES cell line was kindly provided by Dr. Heiner Westphal. The second ES cell line used E14.1 was a gift of Dr. Tom Doetschman. We would like to thank Dr. David Panchinsion for providing some of the PCR-primers and for critical discussions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron D. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SH., Lumelsky, N., Studer, L. et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18, 675–679 (2000). https://doi.org/10.1038/76536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing