Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels

Abstract

P-type and Q-type calcium channels mediate neurotransmitter release at many synapses in the mammalian nervous system. The α1A calcium channel has been implicated in the etiologies of conditions such as episodic ataxia, epilepsy and familial migraine, and shares several properties with native P- and Q-type channels. However, the exact relationship between α1A and P- and Q-type channels is unknown. Here we report that alternative splicing of the α1A subunit gene results in channels with distinct kinetic, pharmacological and modulatory properties. Overall, the results indicate that alternative splicing of the α1A gene generates P-type and Q-type channels as well as multiple phenotypic variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative splicing generates multiple α1A isoforms.
Figure 2: Both α1A-a and α1A-b variants are expressed in the rat nervous system.
Figure 3: α1A-a and α1A-b have distinct functional properties.
Figure 4: Splicing of the domain I–II linker and domain IV S3–S4 loop make distinct contributions to channel kinetics and gating.
Figure 5: Sensitivities of α1A-a and α1A-a (+NP) to ω-Aga-IVA and ω-CTx-MVIIC.
Figure 6: Differential modulation of α1A splice variants by G proteins and PKC.

Similar content being viewed by others

References

  1. McCleskey, E. W. & Schroder, J. E. Functional properties of voltage–dependent calcium channels. Curr. Top. Membr. 39, 295–326 ( 1991).

    Article  CAS  Google Scholar 

  2. Huguenard, J. R. Low–threshold calcium currents in central neurons. Annu. Rev. Physiol. 58, 329–348 (1996).

    Article  CAS  Google Scholar 

  3. Murphy, T. J., Worley, P. F. & Baraban, J. M. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 7, 625–635 (1991).

    Article  CAS  Google Scholar 

  4. Bading, H., Ginty, D. D. & Greenberg, M. E. Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260 , 181–186 (1993).

    Article  CAS  Google Scholar 

  5. Turner, T. J., Adams, M. E. & Dunlap, M. E. Calcium channels coupled to glutamate release identified by ω-Aga-IVA. Science 258, 310– 313 (1992).

    Article  CAS  Google Scholar 

  6. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    Article  CAS  Google Scholar 

  7. Regehr, W. G. & Mintz, I. M. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron 12, 605–613 (1994).

    Article  CAS  Google Scholar 

  8. Dunlap, K., Luebke, J. I. & Turner, T. J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 18, 89 –98 (1995).

    Article  CAS  Google Scholar 

  9. Stea, A., Soong, T. W. & Snutch, T. P. in Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels (ed. North, R. A.) 113– 152 (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  10. Soong, T. W. et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260 , 1133–1136 (1993).

    Article  CAS  Google Scholar 

  11. Bourinet, E. et al. The α1E calcium channel exhibits permeation properties similar to low-voltage-activated calcium channels. J. Neurosci. 16, 4983–4993 (1996).

    Article  CAS  Google Scholar 

  12. Williams, M. E. et al. Structure and functional characterization of neuronal α 1E calcium channel subtypes. J. Biol. Chem. 269 , 22347–22357 (1994).

    CAS  PubMed  Google Scholar 

  13. Perez-Reyes, E. et al. Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391, 896– 900 (1998).

    Article  CAS  Google Scholar 

  14. Lee, J.-H. et al. Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J. Neurosci. 19, 1912–1921 (1999).

    Article  CAS  Google Scholar 

  15. Llinas, R., Sugimori, M., Lin, J. W. & Cherksey, B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA 86, 1689–1693 (1989).

    Article  CAS  Google Scholar 

  16. Mintz, I. M. et al. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355, 827–829 (1992).

    Article  CAS  Google Scholar 

  17. Mintz, I. M., Adams, M. E. & Bean, B. P. P-type calcium channels in rat central and peripheral neurons. Neuron 9, 85–95 (1992).

    Article  CAS  Google Scholar 

  18. Zhang, J.-F. et al. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32, 1075– 1080 (1993).

    Article  CAS  Google Scholar 

  19. Randall, A. & Tsien, R. W. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci. 15, 2995– 3012 (1995).

    Article  CAS  Google Scholar 

  20. Wheeler, D. B., Randall, A. & Tsien, R. W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  CAS  Google Scholar 

  21. Tottene, A., Moretti, A. & Pietrobon, D. Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J. Neurosci. 16, 6353–6363 (1996).

    Article  CAS  Google Scholar 

  22. Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M., Cuttle, M. F. & Takahashi, T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20, 797–807 ( 1998).

    Article  CAS  Google Scholar 

  23. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402 (1991).

    Article  CAS  Google Scholar 

  24. Starr, T. V. B., Prystay, W. & Snutch, T. P. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc. Natl. Acad. Sci. USA 88, 5621–5625 (1991).

    Article  CAS  Google Scholar 

  25. Stea, A. et al. The localization and functional properties of a rat brain α 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc. Natl. Acad. Sci. USA 91, 10576– 10580 (1994).

    Article  CAS  Google Scholar 

  26. Sather, W. A. et al. Distinctive biophysical and pharmacological properties of Class A (BI) calcium channel α1 subunits. Neuron 11, 291–303 ( 1993).

    Article  CAS  Google Scholar 

  27. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 ( 1996).

    Article  CAS  Google Scholar 

  28. Fletcher, C. F. et al. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87, 607– 617 (1996).

    Article  CAS  Google Scholar 

  29. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A–voltage-dependent calcium channel. Nat. Genet. 15, 62– 69 (1997).

    Article  CAS  Google Scholar 

  30. Pragnell, M. et al. Calcium channel β subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1 subunit. Nature 368, 68–70 ( 1994).

    Article  Google Scholar 

  31. Babitch, J. Channel hands. Nature 346, 321– 322 (1990).

    Article  CAS  Google Scholar 

  32. Zamponi, G. W. & Snutch, T. P. Modulation of voltage-dependent calcium channels by G proteins. Curr. Opin. Neurobiol. 8, 351–356 ( 1998).

    Article  CAS  Google Scholar 

  33. Bean, B. P. Neurotransmitter inhibition of neuronal calcium channels by changes in channel voltage dependence. Nature 340, 153– 156 (1989).

    Article  CAS  Google Scholar 

  34. Stea, A., Soong, T. W. & Snutch, T. P. Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15, 929–940 (1995).

    Article  CAS  Google Scholar 

  35. Yang, J., Ellinor, P. T., Sather,W. A., Zhang, J. F. & Tsien, R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993).

    Article  CAS  Google Scholar 

  36. Nakai, J., Adams, B. A., Imoto, K. & Beam, K. G. Critical roles of the S3 segment and S3–S4 linker of repeat I in activation of L-type calcium channels. Proc. Natl. Acad. Sci. USA 91, 1014–1018 (1994).

    Article  CAS  Google Scholar 

  37. Zhang, J.-F., Ellinor, P. T., Aldrich, R. W. & Tsien, R. W. Molecular determinants of voltage-dependent inactivation in calcium channels. Nature 372, 97–100 (1994).

    Article  CAS  Google Scholar 

  38. Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T. & Numa, S. Region of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346, 567–569 (1990).

    Article  CAS  Google Scholar 

  39. McDonough, S. I., Mintz, I. M. & Bean, B. P. Alteration of P-type calcium channel gating by the spider toxin ω-Aga-IVA. Biophys. J. 72, 2117–2128 (1997).

    Article  CAS  Google Scholar 

  40. Rogers, J. C., Qu, Y., Tanada, T. N., Scheuer, T. & Catterall, W. A. Molecular determinants of high affinity binding of α-scorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na+ channel α subunit. J. Biol. Chem. 271, 15950–15962 ( 1996).

    Article  CAS  Google Scholar 

  41. Cestele, S. et al. Voltage sensor trapping: enhanced activation of sodium channels by β-scorpion toxin bound to the S3–S4 loop in domain II. Neuron 21, 919–931 ( 1998).

    Article  CAS  Google Scholar 

  42. Swartz, K.J & MacKinnon, R. Mapping the receptor site for hanatoxin, a gating modifier of voltage-dependent K+ channels. Neuron 18, 675–682 (1997).

    Article  CAS  Google Scholar 

  43. Li-Smerin, Y. & Swartz, K. J. Gating modifier toxins reveal a conserved structural motif in voltage-gated Ca2+ and K+ channels. Proc. Natl. Acad. Sci. USA 95, 8585–8589 (1998).

    Article  CAS  Google Scholar 

  44. Herlitze, S., Hockerman, G. H., Scheuer, T. & Catterall, W. A. Molecular determinants of the inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α 1A subunit. Proc. Natl. Acad. Sci. USA 93, 1512–1516 (1997).

    Article  Google Scholar 

  45. Berrow, N. S., Brice, N. L., Tedder, I., Page, K. M. & Dolphin, A. C. Properties of cloned rat α1A calcium channels transiently expressed in the COS-7 cell line. Eur. J. Neurosci. 9, 739–748 ( 1997).

    Article  CAS  Google Scholar 

  46. Buller, A. L. & White, M. M. Altered patterns of glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes. J. Membrane Biol. 115, 179– 189 (1990).

    Article  CAS  Google Scholar 

  47. Westenbroeck, R. E. et al. Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418 (1995).

    Article  Google Scholar 

  48. Brody, L. D., Patil, P. G., Mulle, J. G., Snutch, T. P. & Yue, D. Y. Burst of action potential waveforms relieve G-protein inhibition of recombinant P/Q-type Ca2+ channels in HEK 293 cells. J. Physiol. (Lond.) 499, 637–644 (1997).

    Article  CAS  Google Scholar 

  49. Ligon, B., Boyd, A. E. III & Dunlap, K. Class A calcium channel variants in pancreatic isets and their role in insulin secretion. J. Biol. Chem. 273, 13905–13911 (1998).

    Article  CAS  Google Scholar 

  50. Yu, A. S., Herbert, S. C., Brenner, B. M. & Lytton, J. Molecular characterization and nephron distribution of a family of transcripts encoding the pore-forming subunit of Ca2+ channels in the kidney. Proc. Natl. Acad. Sci. USA 89, 10494– 10498 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gilbert and A. Stea for comments, E. Perez-Reyes for β2a and β4 subunit cDNAs, and M. Ahlijanian (Pfizer) for ω-agatoxin IVA. T.W.S. was supported by a fellowship from the University of Singapore, Institute of Molecular Biology, E.B. by fellowships from INSERM and EMBO, K.S. by a grant from the Amytrophic Lateral Sclerosis Society of Canada, G.W.Z .by a grant from the Medical Research Council (MRC) of Canada and scholarships from MRC and the Alberta Heritage Foundation for Medical Research. E.B. and G.W.Z. are supported by NATO grant (CRG 971546) and T.P.S. is supported by a grant from the MRC of Canada and an MRC Scientist award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourinet, E., Soong, T., Sutton, K. et al. Splicing of α1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2, 407–415 (1999). https://doi.org/10.1038/8070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/8070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing